如圖,△ABC內(nèi)接于⊙O,AB =AC,直線MN切⊙O于點C,弦BD∥MN,AC與BD相交于點E.
(1)求證:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.
(1)由邊角邊即可證得 (2)
解析試題分析:(Ⅰ)在ΔABE和ΔACD中,
∵ ∠ABE=∠ACD
又,∠BAE=∠EDC ∵BD//MN ∴∠EDC=∠DCN
∵直線是圓的切線,∴∠DCN=∠CAD ∴∠BAE=∠CAD
∴ΔΔ(角、邊、角)
(Ⅱ)∵∠EBC=∠BCM ∠BCM=∠BDC
∴∠EBC=∠BDC=∠BAC BC=CD=4
又 ∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC=∠ACB
∴ BC=BE=4
設(shè)AE=,易證 ΔABE∽ΔDEC
∴又
∴
考點:圓內(nèi)接多邊形的性質(zhì)與判定與圓有關(guān)的比例線段
點評:本題考查與圓有關(guān)的比例線段,考查圓內(nèi)接多邊形的性質(zhì)與判定,考查用方程思想解決幾何中要求的線段的長,本題是一個應(yīng)用知識點比較多的題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
⑴證明:圓心O在直線AD上;
⑵證明:點C是線段GD的中點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,BA是圓O的直徑,延長BA至E,使得AE=AO,過E點作圓O的割線交圓O于D、E,使AD=DC,
求證:;
若ED=2,求圓O的內(nèi)接四邊形ABCD的周長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A.(幾何證明選講選做題)
|
B.(矩陣與變換選做題) 已知M=,N=,設(shè)曲線y=sinx在矩陣MN對應(yīng)的變換作用下得到曲線F,求F的方程. |
C.(坐標(biāo)系與參數(shù)方程選做題) 在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為(t為參數(shù));在以O為極點、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點,求線段AB的長. |
D.(不等式選做題) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知點P是⊙O外一點,PS、PT是⊙O的兩條切線,過點P作⊙O
的割線PAB,交⊙O于A、B兩點,與ST交于點C,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖,AD是⊙O的直徑,AB是⊙O的切線,M, N是圓上兩點,直線MN交AD的延長線于點C,交⊙O的切線于B,BM=MN=NC=1,求AB的長和⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com