(14分)
設(shè)集合W由滿足下列兩個條件的數(shù)列構(gòu)成:

②存在實數(shù)M,使(n為正整數(shù))
(I)在只有5項的有限數(shù)列
;試判斷數(shù)列是否為集合W的元素;
(II)設(shè)是等差數(shù)列,是其前n項和,證明數(shù)列;并寫出M的取值范圍;
(III)設(shè)數(shù)列且對滿足條件的常數(shù)M,存在正整數(shù)k,使
求證:

(I)對于數(shù)列,當n=1時,
顯然不滿足集合W的條件,①
不是集合W中的元素,                          …………2分
對于數(shù)列,當時,
不僅有
而且有
顯然滿足集合W的條件①②,
是集合W中的元素.                              …………4分
(II)是等差數(shù)列,是其前n項和,
設(shè)其公差為d,


          …………7分



的最大值是

,且M的取值范圍是                 …………9分
(III)證明:
整理,


                                  …………14分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)集合W由滿足下列兩個條件的數(shù)列{an}構(gòu)成:
an+an+22
an+1
;②存在實數(shù)M,使an≤M.( n為正整數(shù))
(Ⅰ)在只有5項的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1,試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是等差數(shù)列,Sn是其前n項和,c3=4,S3=18,證明數(shù)列{Sn}∈W;并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,且對滿足條件的常數(shù)M,存在正整數(shù)k,使dk=M.
求證:dk+1>dk+2>dk+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合W由滿足下列兩個條件的數(shù)列{an}構(gòu)成:①
an+an+2
2
an+1
;②存在實數(shù)M,使an≤M.(n為正整數(shù))
(Ⅰ)在只有5項的有限數(shù)列{an}、{bn}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;試判斷數(shù)列{an}、{bn}是否為集合W中的元素;
(Ⅱ)設(shè){cn}是各項為正數(shù)的等比數(shù)列,Sn是其前n項和,c3=
1
4
,S3=
7
4
,試證明{Sn}∈W,并寫出M的取值范圍;
(Ⅲ)設(shè)數(shù)列{dn}∈W,對于滿足條件的M的最小值M0,都有dn≠M0(n∈N*).求證:數(shù)列{dn}單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)設(shè)集合W由滿足下列兩個條件的數(shù)列{an}構(gòu)成:
an+an+2
2
an+1
;②存在實數(shù)M,使an≤M.(n為正整數(shù)).在以下數(shù)列
(1){n2+1};  (2){
2n+9
2n+11
}
;  (3){2+
4
n
}
;  (4){1-
1
2n
}

中屬于集合W的數(shù)列編號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市豐臺區(qū)2010屆高三一模考試(數(shù)學(xué)理) 題型:解答題

(14分)設(shè)集合W由滿足下列兩個條件的數(shù)列構(gòu)成:

②存在實數(shù)M,使(n為正整數(shù))
(I)在只有5項的有限數(shù)列
;試判斷數(shù)列是否為集合W的元素;
(II)設(shè)是各項為正的等比數(shù)列,是其前n項和,證明數(shù)列;并寫出M的取值范圍;
(III)設(shè)數(shù)列且對滿足條件的M的最小值M0,都有.
求證:數(shù)列單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊答案