已知△ABC的內(nèi)角A,B及其對(duì)邊a,b滿足a+b=acotA+bcotB,求內(nèi)角C.
分析:先利用正弦定理題設(shè)等式中的邊轉(zhuǎn)化角的正弦,化簡(jiǎn)整理求得sin(A-
π
4
)=sin(B+
4
),,進(jìn)而根據(jù)A,B的范圍,求得A-
π
4
和B+
4
的關(guān)系,進(jìn)而求得A+B=
π
2
,則C的值可求.
解答:解:由已知及正弦定理,有sinA+sinB=sinA•
cosA
sinA
+sinB•
cosB
sinB
=cosA+cosB,
∴sinA-cosA=cosB-sinB
∴sin(A-
π
4
)=sin(B+
4
),
∵0<A<π,0<B<π
∴-
π
4
<A-
π
4
4
<B+
4
4

∴A-
π
4
+B+
4
=π,
∴A+B=
π
2
,C=π-(A+B)=
π
2
點(diǎn)評(píng):本題主要考查了正弦定理的應(yīng)用.解題過程中關(guān)鍵是利用了正弦定理把邊的問題轉(zhuǎn)化為角的問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,acosB+bcosA=csin(A-B),且a2+b2-
3
ab=c2
,求角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,若ac=5,且
BA
BC
=
5

(1)求△ABC的面積大小及tanB的值;
(2)若函數(shù)f(x)=
2cos2
x
2
+2sin
x
2
cos
x
2
-1
cos(
π
4
+x)
,求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,下列說法中:①在△ABC中,a=x,b=2,B=45°,若該三角形有兩解,則x取值范圍是2<x<2
2
;②在△ABC中,若b=8,c=5,A=60°,則△ABC的外接圓半徑等于
14
3
3
;③在△ABC中,若c=5,
cosA
cosB
=
b
a
=
4
3
,則△ABC的內(nèi)切圓的半徑為2;④在△ABC中,若AB=4,AC=7,BC=9,則BC邊的中線AD=
7
2
;⑤設(shè)三角形ABC的BC邊上的高AD=BC,a、b、c分別表示角A、B、C對(duì)應(yīng)的三邊,則
b
c
+
c
b
的取值范圍是[2,
5
]
.其中正確說法的序號(hào)是
①④⑤
①④⑤
(注:把你認(rèn)為是正確的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C成等差數(shù)列,則cos2A+cos2C的取值范圍是
[
1
2
,
3
2
]
[
1
2
,
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門一模)已知△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c滿足(a+b)2-c2=6且C=60°,則△ABC的面積S=
3
2
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案