國家射擊隊的某隊員射擊一次,命中7~10環(huán)的概率如下表所示:
命中環(huán)數(shù)
10環(huán)
9環(huán)
8環(huán)
7環(huán)
概率
0.32
0.28
0.18
0.12
求該射擊隊員射擊一次
(1)射中9環(huán)或10環(huán)的概率;
(2)至少命中8環(huán)的概率;
(3)命中不足8環(huán)的概率.
(1)0.60(2)0.78(3)0.22
記事件“射擊一次,命中k環(huán)”為Ak(k∈N,k≤10),則事件Ak彼此互斥.                2分
(1)記“射擊一次,射中9環(huán)或10環(huán)”為事件A,那么當(dāng)A9,A10之一發(fā)生時,事件A發(fā)生,由互斥事件的加法公式得
P(A)=P(A9)+P(A10)="0.32+0.28=0.60.                                          " 5分
(2)設(shè)“射擊一次,至少命中8環(huán)”的事件為B,那么當(dāng)A8,A9,A10之一發(fā)生時,事件B發(fā)生.由互斥事件概率的加法公式得
P(B)=P(A8)+P(A9)+P(A10)="0.18+0.28+0.32=0.78.              " 10分
(3)由于事件“射擊一次,命中不足8環(huán)”是事件B:“射擊一次,至少命中8環(huán)”的對立事件:即表示事件“射擊一次,命中不足8環(huán)”,根據(jù)對立事件的概率公式得
P()=1-P(B)="1-0.78=0.22.                                " 14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果A,B是互斥事件,那么下列正確的是
A.是必然事件B.是必然事件
C.一定不互斥D.可能互斥也可能不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

紅、黑、藍(lán)、白4張牌隨機(jī)地分發(fā)給甲、乙、丙、丁4個人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”是:
A.對立事件B.不可能事件
C.互斥事件但不是對立事件D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A、B、C、D、E五人分四本不同的書,每人至多分一本,求:
(1)A不分甲書,B不分乙書的概率;
(2)甲書不分給A、B,乙書不分給C的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為了檢驗產(chǎn)品的質(zhì)量,往往采用隨機(jī)抽樣的方法,抽取部分進(jìn)行檢驗.現(xiàn)從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論哪個是正確的(    )
A.A與C互斥B.B與C互斥
C.任何兩個均互斥D.任何兩個均不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一批產(chǎn)品分為一、二、三級,其中一級品是二級品的兩倍,三級品為二級品的一半,從這批產(chǎn)品中隨機(jī)抽取一個檢驗,其級別為隨機(jī)變量,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人.現(xiàn)采用分層抽樣(層內(nèi)采用不放回簡單隨即抽樣)從甲、乙兩組中共抽取4名工人進(jìn)行技術(shù)考核.
(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的工人中恰有1名女工人的概率;
(Ⅲ)求抽取的4名工人中恰有2名男工人的概率.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

把紅,黃,藍(lán),白4張紙牌隨機(jī)地分發(fā)給甲,乙,丙,丁四個人,每人一張,則事件“甲分得紅牌“與事件“丁分得紅牌“是( 。
A.不可能事件B.互斥但不對立事件
C.對立事件D.以上答案都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

西安世園會志愿者招騁正如火如荼進(jìn)行著,甲、乙、丙三名大學(xué)生躍躍欲試,已知甲能被錄用的概率為
2
3
,甲、乙兩人都不能被錄用的概率為
1
12
,乙、丙兩人都能被錄用的概率為
3
8

(1)乙、丙兩人各自能被錄用的概率;
(2)求甲、乙、丙三人至少有兩人能被錄用的概率.

查看答案和解析>>

同步練習(xí)冊答案