精英家教網 > 高中數學 > 題目詳情
4、設f(x)(x∈R)為偶函數,且f(x)在[0,+∞)上是增函數,則f(-2)、f(-π)、f(3)的大小順序是( 。
分析:先根據偶函數的性質,f(-2)=f(2),f(-π)=f(π),再利用f(x)在[0,+∞)上是增函數,得到f(2)<f(3)<f(π).
解答:解:∵f(x)(x∈R)為偶函數,
∴f(-2)=f(2),f(-π)=f(π),
∵f(x)在[0,+∞)上是增函數,2<3<π,
∴f(2)<f(3)<f(π),
∴f(-2)<f(3)<f(-π),
故選D.
點評:本題考查函數的奇偶性、單調性的應用,體現轉化的數學思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=x|x|+bx+c(b,c∈R),則下列命題中正確的是( 。
A、“b≥0”是“函數y=f(x)在R上單調遞增”的必要非充分條件
B、“b<0,c<0”是“方程f(x)=0有兩個負根”的充分非必要條件
C、“c=0”是“函數y=f(x)為奇函數”的充要條件
D、“c>0”是“不等式f(x)≥( 2
c
+b)x
對任意x∈R+恒成立”的既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•黃埔區(qū)一模)對于函數y=f(x)與常數a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“P數對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數f(x)的一個“類P數對”.設函數f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數,且(2,-2)是f(x)的一個“類P數對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數學 來源:2011-2012學年江西省重點中學協作體高三第一次聯考數學試卷(理科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數學 來源:2011年廣東省高考數學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數,如下定義兩個函數(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案