(2008•虹口區(qū)二模)過點A(0,3),被圓(x-1)2+y2=4截得的弦長為2
3
的直線方程是
x=0或y=-
4
3
x+3
x=0或y=-
4
3
x+3
分析:設出直線的斜率,由弦長公式求得圓心到直線的距離,再根據點到直線的距離公式求出圓心到直線的距離,求出斜率即得直線的方程.
解答:解:當直線的斜率不存在時,直線方程是x=0,截圓得到的弦長等于2
3
,滿足條件;
當直線的斜率存在時,設直線的方程為 y-3=k(x-0),
則由弦長公式得 2
3
=2
r2-d2
=2
4-d2

∴d=1.
根據圓心(1,0)到直線的距離公式得d=1=
|k×1-0+3|
k2+1

∴k=-
4
3
,故直線方程為y=-
4
3
x+3.
綜上,滿足條件的直線方程為x=0或y=-
4
3
x+3.
故答案為:x=0或y=-
4
3
x+3
點評:本題考查直線和圓相交的性質,點到直線的距離公式的應用,弦長公式的應用.由弦長公式求出圓心到直線的距離是解題的關鍵,體現(xiàn)了分類討論的數(shù)學思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•虹口區(qū)二模)若復數(shù)(1+ai)•(a2+i)是純虛數(shù),則實數(shù)a=
0或1
0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•虹口區(qū)二模)等差數(shù)列{an}中,S20=30,則a3+a18=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•虹口區(qū)二模)集合A={x||x|≤4,x∈R},B{x||x-3|≤a,x∈R},且A?B,則實數(shù)a的取值范圍是
(-∞,1]
(-∞,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•虹口區(qū)二模)當x>2時,使不等式x+
1x-2
≥a恒成立的實數(shù)a的取值范圍是
(-∞,4]
(-∞,4]

查看答案和解析>>

同步練習冊答案