(2012•豐臺(tái)區(qū)一模)已知a<b,函數(shù)f(x)=sinx,g(x)=cosx.命題p:f(a)•f(b)<0,命題q:函數(shù)g(x)在區(qū)間(a,b)內(nèi)有最值.則命題p是命題q成立的( 。
分析:由f(a)•f(b)<0,及f(x)在R上連續(xù)可知函數(shù)f(x)在(a,b)上存在零點(diǎn),然后結(jié)合正弦函數(shù)的零點(diǎn)是余弦函數(shù)的最值點(diǎn)可判斷,若g(x)=cosx在(a,b)上有最值,f(x)=sinx在(a,b)上有零點(diǎn),但由于函數(shù)f(x)=sinx在(a,b)不一定單調(diào),f(a)f(b)<0不一定成立
解答:解:∵f(a)•f(b)<0,
又∵f(x)在R上連續(xù)
根據(jù)函數(shù)的零點(diǎn)判定定理可知,函數(shù)f(x)在(a,b)上存在零點(diǎn)
根據(jù)正弦函數(shù)、余弦函數(shù)的性質(zhì)可知,正弦函數(shù)的零點(diǎn)是余弦函數(shù)的最值點(diǎn)
∴g(x)=cosx在(a,b)上有最值
∴p⇒q
若g(x)=cosx在(a,b)上有最值則根據(jù)余弦函數(shù)的零點(diǎn)是正弦函數(shù)的零點(diǎn)
則f(x)=sinx在(a,b)上有零點(diǎn),但是由于函數(shù)f(x)=sinx在(a,b)不一定單調(diào),f(a)f(b)<0不一定成立
故命題p:f(a)•f(b)<0,命題q:函數(shù)g(x)在區(qū)間(a,b)內(nèi)有最值的充分不必要條件
故選A
點(diǎn)評(píng):本題主要考查 了充分條件與必要條件的判斷,解題的關(guān)鍵是準(zhǔn)確、熟練的應(yīng)用函數(shù)的零點(diǎn)定理及正弦函數(shù)與余弦函數(shù)的性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)某班共有學(xué)生40人,將一次數(shù)學(xué)考試成績(jī)(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請(qǐng)根據(jù)圖中所給數(shù)據(jù),求出a的值;
(Ⅱ)從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選3名學(xué)生,求這3名學(xué)生的成績(jī)都在[60,70)內(nèi)的概率;
(Ⅲ)為了了解學(xué)生本次考試的失分情況,從成績(jī)?cè)赱50,70)內(nèi)的學(xué)生中隨機(jī)選取3人的成績(jī)進(jìn)行分析,用X表示所選學(xué)生成績(jī)?cè)赱60,70)內(nèi)的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知向量
a
=(sinθ,cosθ)
,
b
=(3,4)
,若
a
b
,則tan2θ等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)設(shè)a=0.64.2,b=70.6,c=log0.67,則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知定義在R上的函數(shù)y=f(x)滿足f(x+2)=f(x),當(dāng)-1<x≤1時(shí),f(x)=x3.若函數(shù)g(x)=f(x)-loga|x|至少有6個(gè)零點(diǎn),則a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案