2.已知集合A={x||x|<1},B={x|x2-x<0},則A∩B=( 。
A.[-1,2]B.[0,1]C.(0,1]D.(0,1)

分析 求出A與B中不等式的解集分別確定出A與B,找出兩集合的交集即可.

解答 解:由A中不等式變形得:-1<x<1,即A=(-1,1),
由B中不等式變形得:x(x-1)<0,
解得:0<x<1,即B=(0,1),
則A∩B=(0,1),
故選:D.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.對a、b∈R,記$max\left\{{a\;,\;\;b}\right\}=\left\{\begin{array}{l}a\;,\;\;a≥b\\ b\;,\;\;a<b\end{array}\right.$,函數(shù)f(x)=max{|x|,-x2-2x+2},x∈(-4,3)
(1)求f(0),f(-3);
(2)寫出解析式,并作出f(x)的圖象;
(3)就k的值討論關于x的議程f(x)=k解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)沒有零點的是( 。
A.$f(x)={log_2}^x-3$B.$f(x)=\sqrt{x}-4$C.f(x)=$\frac{1}{x-1}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.圓C:x2+y2-4=0被直線l:x-y+2=0截得的弦長為( 。
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$1-\frac{2}{{{3^x}+1}}$
(Ⅰ)用定義證明f(x)是R上的增函數(shù);
(Ⅱ)當x∈[-1,2]時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.單調遞增數(shù)列數(shù)列{an}的通項公式為an=n2+bn,則實數(shù)b的取值范圍為(-3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{16}-\frac{y^2}{8}=1$的虛軸長是( 。
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知U=R,集合A={x|(x-2)[x-(3a+1)<0]},集合$B=\left\{{x\left|{\frac{x-2a}{{x-({{a^2}+1})}}<0}\right.}\right\}$.
(1)當a=2時,求A∩∁UB;
(2)當a≠1時,若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設向量$\overrightarrow a$與$\overrightarrow b$滿足$\overrightarrow a$=(-2,1),$\overrightarrow a$+$\overrightarrow b$=(-1,-2),則|${\overrightarrow a$-$\overrightarrow b}$|=5.

查看答案和解析>>

同步練習冊答案