已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,給出下列結論:
①若|PF1|+|PF2|=2,則點P的軌跡是橢圓;
②若|PF1|-|PF2|=1,則點P的軌跡是雙曲線;
③若
|PF1||PF2|
=λ(λ>0,λ≠1)
,則點P的軌跡是圓;
④若|PF1|•|PF2|=a2(a≠0),則點P的軌跡關于原點對稱;
其中正確的是
③④
③④
(填序號)
分析:利用橢圓與雙曲線的定義可對①②的正誤作出判斷;利用兩點間的距離公式對③與④化簡整理,即可分析其正誤.
解答:解:∵兩定點F1(-1,0),F(xiàn)2(1,0),
①:∵動點P滿足|PF1|+|PF2|=2,
∴則點P的軌跡是線段F1F2,故①錯誤;
②:∵|PF1|-|PF2|=1<2=|F1F2|,
∴點P的軌跡是F1、F2為焦點的雙曲線的右支,不是兩支,故②錯誤;
③:設P(x,y),則
(x+1)2+y2
(x-1)2+y2
=λ(λ>0且λ≠1),
∴整理得:(1-λ2)x2+(1-λ2)y2+(2+2y2)x+1-λ2=0,
∵λ>0且λ≠1,
∴x2+y2+
2+2
12
x+1=0,即(x+
1+λ2
12
)
2
+y2=
(12)2
2

∴點P的軌跡是圓,故③正確;
④:∵|PF1|•|PF2|=
(x+1)2+y2
(x-1)2+y2
=a2,
設P(x,y)為曲線
(x+1)2+y2
(x-1)2+y2
=a2(a≠0)上任意一點,
則P(x,y)關于原點(0,0)的對稱點為P′(-x,-y),
(-x+1)2+(-y)2
(-x-1)2+(-y)2
=
(x-1)2+y2
(x+1)2+y2
=a2(a≠0),
即P′(-x,-y)也在曲線
(x+1)2+y2
(x-1)2+y2
=a2(a≠0)上,
∴點P的軌跡曲線
(x+1)2+y2
(x-1)2+y2
=a2(a≠0)關于原點對稱,即④正確;
綜上所述,正確的是③④.
故答案為:③④.
點評:本題考查命題的真假判斷與應用,著重考查圓錐曲線的概念及應用,考查轉化思想與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩定點F1(-1,0),F(xiàn)2(1,0),且
1
2
|F1F2|
是|PF1|與|PF2|的等差中項,則動點P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)三模)在直角坐標平面xoy中,已知兩定點F1(-1,0)與F2(1,0)位于動直線l:ax+by+c=0的同側,設集合P={l|點F1與點F2到直線l的距離之差等于1},Q={(x,y)|x2+y2≤1,y∈R},
記S={(x,y)|(x,y)∉l,l∈P},T={(x,y)|(x,y)∈Q∩S}.則由T中的所有點所組成的圖形的面積是
3
2
+
π
3
3
2
+
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)三模)規(guī)定:直線l到點F的距離即為點F到直線l的距離,在直角坐標平面xoy中,已知兩定點F1(-1,0)與F2(1,0)位于動直線l:ax+by+c=0的同側,設集合P={l|點F1與點F2到直線l的距離之和等于2},Q={(x,y)|(x,y)∉l,l∈P}.則由Q中的所有點所組成的圖形的面積是
π
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)已知兩定點F1(-1,0),F(xiàn)2(1,0),滿足|
PF1
|+|
PF2
|=4的動點P的軌跡是曲線C.
(Ⅰ) 求曲線C的標準方程;
(Ⅱ)直線l:y=-x+b與曲線C交于A,B兩點,求△AOB面積的最大值.

查看答案和解析>>

同步練習冊答案