如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且
(Ⅰ)求證:EF∥平面BDC1
(Ⅱ)在棱AC上是否存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:15,若存在,指出點(diǎn)G的位置;若不存在,說明理由.

【答案】分析:(I)取AB的中點(diǎn)M,根據(jù),得到F為AM的中點(diǎn),又Q為AA1的中點(diǎn),根據(jù)三角形中位線定理得EF∥A1M,從而在三棱柱ABC-A1B1C1中,A1DBM為平行四邊形,進(jìn)一步得出EF∥BD.最后根據(jù)線面平行的判定即可證出EF∥平面BC1D.
(II)對(duì)于存在性問題,可先假設(shè)存在,即假設(shè)在棱AC上存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1:15,再利用棱柱、棱錐的體積公式,求出AG與AC的比值,若出現(xiàn)矛盾,則說明假設(shè)不成立,即不存在;否則存在.
解答:證明:(I)取AB的中點(diǎn)M,∵,∴F為AM的中點(diǎn),
又∵Q為AA1的中點(diǎn),∴EF∥A1M
在三棱柱ABC-A1B1C1中,D,M分別為A1B1,AB的中點(diǎn),
∴A1D∥BM,A1D=BM,
∴A1DBM為平行四邊形,∴AM∥BD
∴EF∥BD.
∵BD?平面BC1D,EF?平面BC1D,
∴EF∥平面BC1D.
(II)設(shè)AC上存在一點(diǎn)G,使得平面EFG將三棱柱分割成兩部分的體積之比為1:15,
,
=
=
,∴
∴AG=
所以符合要求的點(diǎn)G不存在.
點(diǎn)評(píng):本題考查線面平行,考查棱柱、棱錐、棱臺(tái)的體積的計(jì)算,解題的關(guān)鍵是利用線面平行的判定證明線面平行,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案