1.已知數(shù)列{an}的前n項(xiàng)和Sn=n(n+1),數(shù)列{bn}對(duì)n∈N*,有S1b1+S2b2+…+Snbn=an,求b1+b2+…+b2017=$\frac{2017}{1009}$.

分析 數(shù)列{an}的前n項(xiàng)和Sn=n(n+1),n≥2時(shí),an=Sn-Sn-1.當(dāng)n=1時(shí),a1=S1=2,即可得出an.?dāng)?shù)列{bn}對(duì)n∈N*,有S1b1+S2b2+…+Snbn=an,n≥2時(shí),S1b1+S2b2+…+Sn-1bn-1=an-1,可得Snbn=an-an-1=2,bn=$\frac{2}{n(n+1)}$,再利用裂項(xiàng)求和方法即可得出.

解答 解:∵數(shù)列{an}的前n項(xiàng)和Sn=n(n+1),
∴n≥2時(shí),an=Sn-Sn-1=n(n+1)-n(n-1)=2n.
當(dāng)n=1時(shí),a1=S1=2,對(duì)于上式也成立.
數(shù)列{bn}對(duì)n∈N*,有S1b1+S2b2+…+Snbn=an
∴n≥2時(shí),S1b1+S2b2+…+Sn-1bn-1=an-1
∴Snbn=an-an-1=2,
∴bn=$\frac{2}{n(n+1)}$,
n=1時(shí),a1b1=a1,解得b1=1,對(duì)于上式也成立.
∴bn=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴b1+b2+…+bn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
∴b1+b2+…+b2017=$\frac{2×2017}{2017+1}$=$\frac{2017}{1009}$.
故答案為:$\frac{2017}{1009}$.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為120°,則$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|(λ∈R)的最小值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知 $\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,則sin2α=( 。
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.$-\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知定義域?yàn)閇a-1,2a+1]的奇函數(shù)f(x)=x3+(b-1)x2+x,則f(2x-b)+f(x)≥0的解集為( 。
A.[1,3]B.$[\frac{1}{3},2]$C.[1,2]D.$[\frac{1}{3},1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知i是虛數(shù)單位,則($\frac{1+i}{1-i}$)2017+$\frac{1}{i}$=( 。
A.0B.1C.iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.有下列關(guān)系:①學(xué)生上學(xué)的年限與知識(shí)掌握量的關(guān)系;②函數(shù)圖象上的點(diǎn)與該點(diǎn)的坐標(biāo)之間的關(guān)系;③葡萄的產(chǎn)量與氣候之間的關(guān)系;④森林中的同一種樹(shù)木,其橫斷面直徑與高度之間的關(guān)系.其中有相關(guān)關(guān)系的是( 。
A.①②③B.①②C.②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知△ABC是邊長(zhǎng)為4的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是( 。
A.-2B.$-\frac{3}{2}$C.-3D.-6 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,不滿足f(3x)=3f(x)的是( 。
A.f(x)=|x|B.f(x)=-xC.f(x)=x-|x|D.f(x)=x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|(x+2m)(x-m+4)<0},其中m∈R,集合B={x|$\frac{1-x}{x+2}$>0}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案