12.已知定義在R上的函數(shù)f(x)=ln(e2x+1)+ax(a∈R)是偶函數(shù).
(1)求實(shí)數(shù)a的值;并判斷f(x)在[0,+∞)上的單調(diào)性;(不必證明)
(2)若f(x2+$\frac{1}{x^2}$)>f(mx+$\frac{m}{x}$)恒成立,求實(shí)數(shù)m的取值范圍.

分析 (1)利用偶函數(shù),可得f(1)=f(-1),求解a,然后判斷函數(shù)的奇偶性以及函數(shù)的單調(diào)性.
(2)f(x)在[0,+∞)上是單調(diào)增函數(shù),且是偶函數(shù),又$f({x^2}+\frac{1}{x^2})>f(mx+\frac{m}{x})$,轉(zhuǎn)化為不等式構(gòu)造函數(shù)求解最值然后推出m范圍.

解答 解:(1)因?yàn)閒(x)是定義在R上的偶函數(shù),所以f(1)=f(-1),
即ln(e2+1)+a=ln(e-2+1)-a,即$2a=ln(\frac{{{e^{-2}}+1}}{{{e^2}+1}})=-2$,得a=-1,…4分
當(dāng)a=-1時(shí),f(x)=ln(e2x+1)-x,
對(duì)于?x∈R,f(-x)=ln(e-2x+1)+x=ln(e2x+1)-x=f(x),綜上a=-1…6分
f(x)在[0,+∞)上是單調(diào)增函數(shù),…8分
(2)f(x)在[0,+∞)上是單調(diào)增函數(shù),且是偶函數(shù),又$f({x^2}+\frac{1}{x^2})>f(mx+\frac{m}{x})$,
所以${x^2}+\frac{1}{x^2}>|{mx+\frac{m}{x}}|$,…9分
令$t=x+\frac{1}{x}$,則t∈(-∞,-2]∪[2,+∞),
所以|mt|<t2-2,$|m|<|t|-\frac{2}{|t|}$恒成立,…12分
因?yàn)?|t|-\frac{2}{|t|}$,關(guān)于|t|在[2,+∞)上單調(diào)遞增,
所以$|t|-\frac{2}{|t|}≥1$,所以|m|<1恒成立,所以-1<m<1.…16分.

點(diǎn)評(píng) 本題考查函數(shù)恒成立,函數(shù)的單調(diào)性以及函數(shù)的奇偶性的應(yīng)用,構(gòu)造法的應(yīng)用,考查函數(shù)思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1008+a1009>0,a1009<0,則數(shù)列$\left\{{\frac{1}{a_n}}\right\}$中值最小的項(xiàng)是( 。
A.第1008 項(xiàng)B.第1009 項(xiàng)C.第2016項(xiàng)D.第2017項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:x<1;命題q:不等式x2+x-2<0成立,則命題p的( 。┦敲}q.
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一點(diǎn)M到左焦點(diǎn)的距離為3,那么點(diǎn)M到右準(zhǔn)線的距離為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知x>$\frac{1}{2}$,則函數(shù)y=$\frac{{x}^{2}+x+1}{2x-1}$的最小值為$\frac{\sqrt{7}}{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知甲、乙、丙3名運(yùn)動(dòng)員擊中目標(biāo)的概率分別為0.7,0.8,0.85,若他們3人向目標(biāo)各發(fā)1槍,則目標(biāo)沒(méi)有被擊中的概率為0.009.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$是單位向量,且$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,則$({\overrightarrow c-\overrightarrow a})•({\overrightarrow c-\overrightarrow b})$的最小值是$\frac{3}{2}$-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{2}$cos(2x-$\frac{π}{12}$).
(1)若sinθ=-$\frac{4}{5}$,θ∈($\frac{3π}{2}$,2π),求f(θ+$\frac{π}{6}$)的值;
(2)若x∈[$\frac{π}{4}$,$\frac{7π}{6}$],求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.?dāng)?shù)列2,-5,8,-11,…的一個(gè)通項(xiàng)公式為( 。
A.an=3n-1,n∈N*B.${a_n}={(-1)^n}(3n-1)$,n∈N*
C.${a_n}={(-1)^{n+1}}(3n-1)$,n∈N*D.${a_n}={(-1)^{n+1}}(3n+1)$,n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案