【題目】已知函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,求的取值范圍.

【答案】(1) 的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是.(2)

【解析】

(1)當時,,判斷其正負號則單調(diào)性可求;(2)法一:由(1)得進而,放縮不等式為當時,,構(gòu)造函數(shù)求解即可;法二:分離a問題轉(zhuǎn)化為,求最值即可求解

(1)函數(shù)的定義域為

時,,

,則,

因為上單調(diào)遞增,且,

所以當時,;當 時,;

所以上單調(diào)遞減,在上單調(diào)遞增.

所以,即,僅當時取等號.

所以當時,;當時,;

所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

(2)解法一.

由(1)知,

所以當時,,得

時,,

,

由(1)知,,所以,滿足題意.

時,,不滿足題意.

所以的取值范圍是.

解法二:

由(1)知,

所以當時,,得

,得

問題轉(zhuǎn)化為,

,則,

因為(僅當時取等號),,

所以當時,;當時,

所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

所以,

所以的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中國大學先修課程,是在高中開設(shè)的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中開設(shè)大學先修課程已有兩年,兩年共招收學生2000人,其中有300人參與學習先修課程,兩年全校共有優(yōu)等生200人,學習先修課程的優(yōu)等生有60人.這兩年學習先修課程的學生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分數(shù)

人數(shù)

20

55

105

70

50

參加自主招生獲得通過的概率

0.9

0.8

0.6

0.5

0.4

(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學習先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計

學習大學先修課程

沒有學習大學先修課程

總計

(2)已知今年有150名學生報名學習大學先修課程,以前兩年參加大學先修課程學習成績的頻率作為今年參加大學先修課程學習成績的概率.

①在今年參與大學先修課程的學生中任取一人,求他獲得某高校自主招生通過的概率;

②設(shè)今年全校參加大學先修課程的學生獲得某高校自主招生通過的人數(shù)為,求.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年“雙十一”當天,甲、乙兩大電商進行了打折促銷活動,某公司分別調(diào)查了當天在甲、乙電商購物的1000名消費者的消費金額,得到了消費金額的頻數(shù)分布表如下:

甲電商:

消費金額(單位:千元)

[0,1

[12

[2,3

[3,4

[4,5]

頻數(shù)

50

200

350

300

100

乙電商:

消費金額(單位:千元)

[0,1

[12

[2,3

[3,4

[45]

頻數(shù)

250

300

150

100

200

(Ⅰ)根據(jù)頻數(shù)分布表,完成下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費者在甲、乙電商消費金額的中位數(shù)的大小以及方差的大小(其中方差大小給出判斷即可,不必說明理由);

(Ⅱ)(。└鶕(jù)上述數(shù)據(jù),估計“雙十一”當天在甲電商購物的大量的消費者中,消費金額小于3千元的概率;

(ⅱ)現(xiàn)從“雙十一”當天在甲電商購物的大量的消費者中任意調(diào)查5位,記消費金額小于3千元的人數(shù)為X,試求出X的期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C過點,離心率為.

(1)求橢圓C的標準方程;

(2)設(shè)F1,F2分別為橢圓C的左、右焦點,過F2的直線l與橢圓C交于不同兩點M,N,記F1MN的內(nèi)切圓的面積為S,求當S取最大值時直線l的方程,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在菱形中,,的中點,以為折痕,將折起,使點到達點的位置,且平面平面,如圖2.

(1)求證:;

(2)若的中點,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點.

1)求橢圓C的方程;

2)設(shè)過點的直線l與橢圓C交于,兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點.

1)求橢圓C的方程;

2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點,證明:的面積為定值(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點、,且為定值),線段的中點為,與直線平行的切線的切點為(不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點為切點).

1)用、表示出點、點的坐標,并證明垂直于軸;

2)求的面積,證明的面積與、無關(guān),只與有關(guān);

3)小張所在的興趣小組完成上面兩個小題后,小張連、,再作與、平行的切線,切點分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認為小張能做到嗎?請你說出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題

1)若一條直線與兩條直線都相交,那么這三條直線共面;

2)若三條直線兩兩平行,那么這三條直線共面;

3)若直線與直線異面,直線與直線異面,那么直線與直線異面;

4)若直線與直線垂直,直線與直線垂直,那么直線與直線平行;

其中正確的命題個數(shù)有(

A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案