分析:(1)分別利用指數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性即可求得x的范圍,再取交集即可;
(2)根據(jù)對(duì)數(shù)運(yùn)算性質(zhì)對(duì)f(x)進(jìn)行化簡(jiǎn),然后轉(zhuǎn)化為關(guān)于log2x的二次函數(shù),利用二次函數(shù)的性質(zhì)可得函數(shù)的最值,注意x的范圍;
解答:解:(1)因?yàn)?
x≤16=2
4,所以x≤4;
又
log2x≥=log22,所以
x≥,
故所求x的取值范圍是
≤x≤4;
(2)
f(x)=log2()•log()=
(log2x-1)•(log-log2)=(log
2x-1)•(log
2x-2)=
(log2x)2-3log2x+2=
(log2x-)2-
,
由已知
≤log2x≤2,
所以,當(dāng)
log2x=,即
x=2時(shí),f(x)取得最小值
-;
當(dāng)
log2x=,即
x=時(shí),f(x)取得最大值
.
點(diǎn)評(píng):本題考查對(duì)數(shù)的運(yùn)算性質(zhì)、函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力.