函數(shù)f(x)=(sinx+cosx)cosx(x∈R)的最小正周期為   
【答案】分析:先利用乘法分配律給括號(hào)中各項(xiàng)都乘以cosx,然后分別利用二倍角的正弦、余弦函數(shù)公式進(jìn)行化簡(jiǎn),前兩項(xiàng)提取后,再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),找出ω的值,代入周期公式T=即可求出函數(shù)的最小正周期.
解答:解:函數(shù)f(x)=(sinx+cosx)cosx
=sinxcosx+cos2x
=sin2x+(cos2x+1)
=(sin2x+cos2x)+
=sin(2x+)+,
∵ω=2,∴T==π.
故答案為:π
點(diǎn)評(píng):此題考查了三角函數(shù)的周期性及其求法,涉及的知識(shí)有:二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及特殊角的三角函數(shù)值,其中利用三角函數(shù)的恒等變形把函數(shù)解析式化為一個(gè)角的三角函數(shù)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(sinx+3)(cosx-3)的值域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=acosx+sinx在x=
π
4
處取得極值,則a的值等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)x∈[-π,π]時(shí),函數(shù)f(x)=sin2x+sinx在下列區(qū)間上單調(diào)遞增的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex+sinx,g(x)=ax,F(xiàn)(x)=f(x)-g(x).
(1)若x=0是F(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若x>0時(shí),函數(shù)y=F(x)的圖象恒在y=F(-x)的圖象上方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lgx-sinx,則f(x)在(0,+∞)上的零點(diǎn)個(gè)數(shù)為( 。
A、2B、3C、4D、無(wú)數(shù)個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案