某化工廠生產(chǎn)化工產(chǎn)品,去年生產(chǎn)成本為50元/桶,現(xiàn)使生產(chǎn)成本平均每年降低28%,那么幾年后每桶的生產(chǎn)成本為20元(lg2≈0.301 0,lg3≈0.477 1,精確到1年)?

[分析] 設(shè)x年后每桶的生產(chǎn)成本為20元,由題意列出關(guān)于x,50,28%,20之間的關(guān)系式,解出x.

 [解析] 設(shè)x年后每桶的生產(chǎn)成本為20元.

1年后每桶的生產(chǎn)成本為50×(1-28%),

2年后每桶的生產(chǎn)成本為50×(1-28%)2,

x年后每桶的生產(chǎn)成本為50×(1-28%)x=20.

所以,0.72x=0.4,等號(hào)兩邊取常用對(duì)數(shù),得

xlg0.72=lg0.4.

故x=

≈3(年).

所以,3年后每桶的生產(chǎn)成本為20元.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間,其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可近似地表示為y=
110
x2-30x+4000

問(wèn):
(1)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本?
(2)若每噸平均出廠價(jià)為16萬(wàn)元,則年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的關(guān)系可近似地表示為 。     

(Ⅰ)當(dāng)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸最低平均成本;w.w.w.k.s.5.u.c.o.m             

(Ⅱ)若每噸平均出廠價(jià)為16萬(wàn)元,求年生產(chǎn)多少噸時(shí),可獲得最大的年利潤(rùn),并求最大年利潤(rùn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省洞口四中上學(xué)期高二學(xué)考模擬試題二 題型:解答題

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之內(nèi),其年生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的關(guān)系可近似地表示為。
(1)當(dāng)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低,并求每噸最低平均成本
(2)若每噸平均出廠價(jià)為16萬(wàn)元,求年生產(chǎn)多少噸時(shí),可獲得最大的年利潤(rùn),并求最大年利潤(rùn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省溫州市十校聯(lián)合體高一上學(xué)期期中數(shù)學(xué)試卷 題型:解答題

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本(萬(wàn)元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式近似地表示為.問(wèn):(1)每噸平均出廠價(jià)為16萬(wàn)元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn);

(2)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案