對數(shù)列{an},規(guī)定{Δan}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中Δan=an+1-an(n∈N)

對自然數(shù)k,規(guī)定{Δkan}為{an}的k階差分?jǐn)?shù)列,其中Δkan=Δk-1an+1-Δk-1an=Δ(Δk-1an).

(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),試判斷{Δan},{Δ2an}是否為等差或等比數(shù)列,為什么?

(2)若數(shù)列{an}首項a1=1,且滿足Δ2an-Δan+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.

(3)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

答案:
解析:

  解:(1),∴是首項為4,公差為2的等差數(shù)列.

  

  ∴是首項為2,公差為0的等差數(shù)列;也是首項為2,公比為1的等比數(shù)列;

  (2),即,即,∴

  ∵,∴,,猜想:

  證明:ⅰ)當(dāng)時,

 、)假設(shè)時,

  時,結(jié)論也成立

  ∴由ⅰ)、ⅱ)可知,;

  (3),即

  ∵

  ∴存在等差數(shù)列,,使得對一切自然都成立.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
(3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan} 為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+2;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中kan=k-1an+1-k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+24;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對數(shù)列{an},規(guī)定{Van}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中Van=an+1-an(n∈N*).對正整數(shù)k,規(guī)定{Vkan}為{an}的k階差分?jǐn)?shù)列,其中Vkan=Vk-1an+1-Vk-1an=V(VK-1an)(規(guī)定V0an=an).
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),是判斷{Van}是否為等差數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}的首項a1=1,且滿足V2an-Van+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•桂林一模)對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*).規(guī)定{△2an}為{an}的二階差分?jǐn)?shù)列,其中△2an=△an+1-△an
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),試判斷{△an},{△2an}是否為等差或等比數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}首項a1=1,且滿足2an-△an+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案