設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,滿足Sn+an=n+3(n∈N*).
(1)求證:存在常數(shù)c,使數(shù)列{an+c}是等比數(shù)列;
(2)求an與Sn;
(3)設(shè)Tn=Sn-nan(n∈N*),求證:Tn+1>Tn.
分析:(1)寫出S
n-1+a
n-1=n+2與條件相減,經(jīng)過整理變形,從而可構(gòu)造新數(shù)列得證;
(2)由(1){a
n-1}是等比數(shù)列,且公比q=
,可求通項(xiàng),進(jìn)而可以求S
n;
(3)先由條件得T
n+1=S
n+1-(n+1)×a
n+1=s
n-na
n+1再與條件相減得T
n+1-T
n=n[a
n-a
n+1],從而可證.
解答:解:(1)證明:S
n+a
n=n+3①;S
n-1+a
n-1=n+2 ②
①式與②式相減,得 2a
n-a
n-1=1,經(jīng)過變形,得
=,
顯然存在常數(shù)c=-1,使得數(shù)列{a
n-1}是等比數(shù)列,且公比q=
(2)當(dāng)n=1,有s
1+a
1=2a
1=1+3,可得a
1=2,
由{a
n-1}是等比數(shù)列,公比q=0.5,當(dāng)n>1時,可知a
n-1=(a
1-1)q
n-1化簡,得a
n=0.5
n-1+1
s
n=n+3-an=n+2-q^(n-1)=n+2-0.5
n-1
(3)證明:T
n+1=S
n+1-(n+1)×a
n+1=s
n-na
n+1 由T
n=S
n-na
n,兩式相減,得T
n+1-T
n=n[a
n-a
n+1]③
由于n為N正,n>0,當(dāng)n=1時,a
n=2,a
n+1=1,a
n-a
n+1>0,故③式右邊大于0,故T
n+1>T
n.
當(dāng)n>1時,由前面得a
n-a
n+1=0.5a
n>0,故③式右邊大于0,故T
n+1>T
n.
得證
點(diǎn)評:本題主要考查構(gòu)造法求新數(shù)列,考查數(shù)列的通項(xiàng)與前n項(xiàng)和,多次使用兩式相減得方法,屬于中檔題.