已知函數(shù)
g(x)=kx+b(k≠0),當(dāng)x∈[-1,1]時,g(x)的最大值比最小值大2,又f(x)=2x+3.是否存在常數(shù)k,b使得f[g(x)]=g[f(x)]對任意的x恒成立,如果存在,求出k,b.如果不存在,說明理由.科目:高中數(shù)學(xué) 來源:吉林省扶余一中2010-2011學(xué)年高一上學(xué)期第一次月考文科數(shù)學(xué)試題 題型:044
已知函數(shù)g(x)=kx+b(k≠0),當(dāng)x∈[-1,1]時,g(x)的最大值比最小值大2,又f(x)=2x+3是否存在常數(shù)k,b使得f[g(x)]=g[f(x)]對任意的x恒成立,如果存在,求出k,b.如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省余姚中學(xué)2011屆高三第一次質(zhì)量檢測理科數(shù)學(xué)試題 題型:044
已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時,若對x1∈(1,+∞),x2∈[1,2],使f(x1)≤g(x2),試求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省濰坊市三縣2012屆高三上學(xué)期12月聯(lián)考數(shù)學(xué)文科試題 題型:044
已知函數(shù)f(x)=x2+bsinx-2,F(xiàn)(x)=f(x)+2,且對于任意實數(shù)x,恒有F(x)-F(-x)=0.
(1)求函數(shù)f(x)的解析式;
(2)已知函數(shù)g(x)=f(x)+2(x+1)+alnx在區(qū)間(0,1)上單調(diào)遞減,求實數(shù)a的取值范圍;
(3)函數(shù)h(x)=ln(1+x2)-f(x)-k有幾個零點?(注:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試山東卷數(shù)學(xué)文科 題型:044
已知函數(shù)f(x)=(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=x(x),其中(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=(k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(1,f(1))處的切線與x軸平行.
(1)求k的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)設(shè)g(x)=(x2+x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<1+e-2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com