在(x-
2
3x
8的二項(xiàng)展開(kāi)式中,常數(shù)項(xiàng)為(  )
A、1024B、1324
C、1792D、-1080
考點(diǎn):排列、組合的實(shí)際應(yīng)用,二項(xiàng)式定理的應(yīng)用
專題:計(jì)算題,二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:(x-
2
3x
8的二項(xiàng)展開(kāi)式的通項(xiàng)公式為Tr+1=
C
r
8
•x8-r•(-2)rx-
r
3
=(-2)r
C
r
8
x8-
4r
3

令8-
4
3
r=0,解得r=6,故展開(kāi)式中的常數(shù)項(xiàng)為1792,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=
m
x2+mx+1的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}定義如下:a1=1,且當(dāng)n≥2時(shí),an=
a
n
2
+1,n為偶數(shù)
1
an-1
,n為奇數(shù)
,若an=
19
11
,則正整數(shù)n=( 。
A、112B、114
C、116D、118

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

地平面上一旗桿OP,為測(cè)得它的高度h,在地平面上取一基線AB,AB=30m,在A處測(cè)得旗桿頂P點(diǎn)的仰角為θ且tanθ=
1
2
,在B處測(cè)得P點(diǎn)的仰角∠OBP=45°,又測(cè)得∠AOB=60°,求旗桿的高h(yuǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c.;其中cosA=
2
3
,且c=3,a=
6
;
(1)求sinC的大小
(2)求b的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y2=4x的焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則
OA
OB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-3x+m,g(x)=2x2-4x,若f(x)≥g(x)恰在x∈[-1,2]上成立,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2-a.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)對(duì)任意a≤-3,使得f(1)是函數(shù)f(x)的區(qū)間[1,b](b>1)上的最大值,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{2n-11},那么前n項(xiàng)和Sn的最小值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案