已知a是實數(shù),直線2x-y+5=0與直線x-y+a+4=0的交點不在橢圓x2+2y2=11上,求a的取值范圍.
分析:兩條直線的交點即方程組
2x-y+5=0
x-y+a+4=0
的解,此時(x,y)=(a-1,2a-3).由該點不在橢圓x2+2y2=11上,能求出a的取值范圍.
解答:解:兩條直線的交點即方程組
2x-y+5=0
x-y+a+4=0
的解,
此時(x,y)=(a-1,2a-3).
該點不在橢圓x2+2y2=11上,
當且僅當(a-1)2+2(2a-3)2=11解得a=-2,或a=-
4
9

∴a≠-2且a≠-
4
9

∴a的取值范圍是(-∞,-2)∪(-2,-
4
9
)∪(-
4
9
,+∞
).
點評:本題考查直線與圓錐曲線的位置關系,解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點,其中點A的坐標為(2
3
,0),BC過橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過點M(0,t)的直線l(斜率存在時)與橢圓m交于兩點P,Q,設D為橢圓m與y軸負半軸的交點,且|
DP
|=|
DQ
|.求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上不同的三點,O是l外一點,向量
OA
,
OB
OC
滿足:
OA
-(
3
2
x2+1)•
OB
-[ln(2+3x)-y]•
OC
=
0
.記y=f(x).
(Ⅰ)求函數(shù)y=f(x)的解析式:
(Ⅱ)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求實數(shù)a的取值范圍:
(Ⅲ)若關于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是直線l上的不同的三點,O是外一點,則向量
OA
、
OB
、
OC
滿足:
OA
OB
OC
,其中λ+μ=1.
(1)若A、B、C三點共線且有
OA
-(3x+1)•
OB
-(
3
2+3x
-y)•
OC
=
0
成立.記y=f(x),求函數(shù)y=f(x)的解析式;
(2)若對任意x∈[
1
6
,
1
3
]
,不等式|a-lnx|-ln[f(x)-3x]>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數(shù)方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:x2=2py(p>0),過它的焦點F且斜率為1的直線與拋物線C相交于A,B兩點,已知|AB|=2.
(1)求拋物線C的方程;
(2)已知t是一個負實數(shù),P是直線y=t上一點,過P作直線l1與l2,使l1⊥l2,若對任意的點P,總存在這樣的直線l1與l2,使l1,l2與拋物線均有公共點,求t的取值范圍.

查看答案和解析>>

同步練習冊答案