已知y=f(x)是奇函數(shù),且f(3)=7,則f(-3)=
-7
-7
分析:運(yùn)用奇函數(shù)的性質(zhì)直接求解.
解答:解:因?yàn)閥=f(x)是奇函數(shù),所以有f(-x)=-f(x),
所以f(-3)=-f(3)=-7.
故答案為-7.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性的性質(zhì),函數(shù)是奇函數(shù),則在其定義域內(nèi)恒有f(-x)=-f(x),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=lnx-ax(a>
1
2
)
,當(dāng)x∈(-2,0)時(shí),f(x)的最小值為1,
則a的值等于(  )
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•上海)已知y=f(x)是奇函數(shù),若g(x)=f(x)+2且g(1)=1,則g(-1)=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是奇函數(shù),且滿(mǎn)足f(x+2)+2f(-x)=0,當(dāng)x∈(0,2)時(shí),f(x)=Inx-ax(a>
1
2
)
,當(dāng)x∈(-4,-2),f(x)的最大值為-
1
4
,則a=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=lnx-ax(a>
12
),當(dāng)x∈(-2,0)時(shí),f(x)的最小值為1,則a的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案