已知數(shù)列是公差不為0的等差數(shù)列,,且,成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),求數(shù)列的前項和。

(1);(2)

解析試題分析:(1)根據(jù)等比中項的性質(zhì)列出關(guān)于公差的方程即可,注意公差的范圍;(2)根據(jù)通項公式的形式采用裂項求和法即可.
試題解析:(1)設(shè)數(shù)列的公差為,由成等比數(shù)列,得
,            解得,或,
當(dāng)時,,與成等比數(shù)列矛盾,舍去. ,
即數(shù)列的通項公式
(2)=,

考點:(1)等差數(shù)列與等比數(shù)列;(2)裂項求和法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公比不為的等比數(shù)列的首項,前項和為,且成等差數(shù)列.
(1)求等比數(shù)列的通項公式;
(2)對,在之間插入個數(shù),使這個數(shù)成等差數(shù)列,記插入的這個數(shù)的和為,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是等差數(shù)列,且成等比數(shù)列。
(1).求數(shù)列的通項公式
(2).設(shè),求前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中這個數(shù)中取,)個數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個數(shù)記為
(1)當(dāng)時,寫出所有可能的遞增等差數(shù)列及的值;
(2)求
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和,又,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的公差不為零,其前n項和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前n項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項和為,,且成等比數(shù)列,當(dāng)時,
(1)求證:當(dāng)時,成等差數(shù)列;
(2)求的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為數(shù)列的前項和,對任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,,求數(shù)列的通項公式;
(3)在滿足(2)的條件下,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知兩個等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項公式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案