分析 (1)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用“錯位相減法”與等比數(shù)列的求和公式即可得出.
解答 (1)解:當(dāng)n=1時,$a_1^2={a_1}+{a_1}$,又an>0,∴a1=2;
當(dāng)n≥2時,an=Sn-Sn-1=(2an-2)-(2an-1-2),∴an=2an-1,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為2.
∴an=2n.
(2)證明:${b_n}=\frac{n}{a_n}$=$\frac{n}{{2}^{n}}$,
令Tn=b1+b2+…+bn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$,
相減可得:$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=$1-\frac{2+n}{{2}^{n+1}}$,
∴Tn=2-$\frac{2+n}{{2}^{n}}$<2.
點(diǎn)評 本題考查了“錯位相減法”、等比數(shù)列的定義通項(xiàng)公式與求和公式、“放縮”法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 15 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{e}$,$\frac{1}{\sqrt{e}}$) | B. | (-$\frac{1}{\sqrt{e}}$,$\sqrt{e}$) | C. | (-∞,$\sqrt{e}$) | D. | (-∞,$\frac{1}{\sqrt{e}}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 既有最大值又有最小值 | B. | 有最大值沒有最小值 | ||
C. | 有最小值沒有最大值 | D. | 既沒有最大值也沒有最小值 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com