某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時和2小時,漆工油漆一張A、B型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張A、B型桌子分別獲利潤2千元和3千元,試問工廠每天應生產(chǎn)A、B型桌子各多少張,才能獲得利潤最大?最大利潤是多少?
每天應生產(chǎn)A型桌子2張,B型桌子3張才能獲得最大利潤,最大利潤為13千元.

試題分析:設每天生產(chǎn)A型桌子x張,B型桌子y張,根據(jù)題意可列出不等式組
在平面直角坐標系中作出上不等式組所表示的平面區(qū)域,將目標函數(shù)化成
變化時,它表示一組平行直線,當該直線經(jīng)過可行域且在軸上的截距最大時最大.依此找出最優(yōu)解,求得的最大值.
試題解析:

解:設每天生產(chǎn)A型桌子x張,B型桌子y張,則
目標函數(shù)為:z=2x+3y
作出可行域:
把直線:2x+3y=0向右上方平移至的位置時,直線經(jīng)過可行域上的點M,且與原點距離最大,此時z=2x+3y取最大值
解方程得M的坐標為(2,3)
此時最大利潤千元
答:每天應生產(chǎn)A型桌子2張,B型桌子3張才能獲得最大利潤,最大利潤為13千元.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中正確的是( 。
A.y=x+
1
x
的最小值是2
B.y=
x2+3
x2+2
的最小值是2
C.y=
x2+5
x2+4
的最小值是
5
2
D.y=2-3x-
4
x
的最大值是2-4
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知實數(shù)滿足約束條件,則的最小值為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知變量x,y滿足約束條件 則的取值范圍是(    )
A.B.C.D.(3,6]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知x,y滿足,(x∈Z,y∈Z),每一對整數(shù)(x,y)對應平面上一個點,則過這些點中的其中3個點可作不同的圓的個數(shù)為(  )
A.45 B.36C.30D.27

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若點在直線的下方,則的取值范圍是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

當實數(shù),滿足時,恒成立,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知向量,是平面區(qū)域內的動點,是坐標原點,則 的最小值是            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點在直線的兩側,則a的取值范圍是(     ).
A.B.
C.D.

查看答案和解析>>

同步練習冊答案