已知點P(x0,y0)(y0>0)是拋物線y2=4x上一點,過點P作兩條傾斜角互補的直線分別交拋物線于不同兩點A(x1,y1),B(x2,y2).
(1)求
y1+y2y0
的值;
(2)求證:直線AB的斜率為定值.
分析:(1)由A(x1,y1),B(x2,y2)在拋物線y2=4x上,知
y12=4x1
y22=4x2
y12-y22=4(x1-x2),所以kAB=
y1-y2
x1-x2
=
4
y1+y2
,同理,kAP=
4
y1+y0
kBP=
4
y2+y0
,由kAP=-kBP,能求出
y1+y2
y0
的值.
(2)由(1)得kAB=
4
y1+y2
,由此能夠證明直線AB的斜率為定值.
解答:(1)解:∵A(x1,y1),B(x2,y2)在拋物線y2=4x上,
y12=4x1
y22=4x2

y12-y22=4(x1-x2),
∵x1≠x2
kAB=
y1-y2
x1-x2
=
4
y1+y2
,
同理,kAP=
4
y1+y0
,
kBP=
4
y2+y0
,
∵kAP=-kBP,
4
y1+y0
=-
4
y2+y0
,
∴y1+y2=-2y0
y1+y2
y0
=-2

(2)證明:由(1)得:
kAB=
4
y1+y2

=
4
-2y0

=-
2
y0
(定值).
點評:本題考查直線與拋物線的性質(zhì)和應用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0).
(1)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(2)若C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),求證:xE•xF是與MN和點P位置無關(guān)的定值;
(3)請選定一條除橢圓外的圓錐曲線C,試探究xE和xF經(jīng)過某種四則運算(加、減、乘、除),其結(jié)果是否是與MN和點P位置無關(guān)的定值,寫出你的研究結(jié)論并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、已知點P(x0,y0)和點A(1,2)在直線l:3x+2y-8=0的異側(cè),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓錐曲線上任意兩點連成的線段稱為弦.若圓錐曲線上的一條弦垂直于其對稱軸,我們將該弦稱之為曲線的垂軸弦.已知點P(
x0,y0)、M(m,n)是圓錐曲線C上不與頂點重合的任意兩點,MN是垂直于x軸的一條垂軸弦,直線MP,NP分別交x軸于點E(xE,0)和點F(xF,0).
(Ⅰ)試用x0,y0,m,n的代數(shù)式分別表示xE和xF;
(Ⅱ)已知“若點P(x0,y0)是圓C:x2+y2=R2上的任意一點(
x0•y0≠0),MN是垂直于x軸的垂軸弦,直線MP、NP分別交x軸于點E(xE,0)和點F(xF,0),則xExF=R2”.類比這一結(jié)論,我們猜想:“若曲線C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
(如圖),則xE•xF也是與點M、N、P位置無關(guān)的定值”,請你對該猜想給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x0,y0)和點A(2,3)在直線l:x+4y-6=0的異側(cè),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(x0,y0)是漸近線為2x±3y=0且經(jīng)過定點(6,2
3
)的雙曲線C1上的一動點,點Q是P關(guān)于雙曲線C1實軸A1A2的對稱點,設(shè)直線PA1與QA2的交點為M(x,y),
(1)求雙曲線C1的方程;
(2)求動點M的軌跡C2的方程;
(3)已知x軸上一定點N(1,0),過N點斜率不為0的直線L交C2于A、B兩點,x軸上是否存在定點 K(x0,0)使得∠AKN=∠BKN?若存在,求出點K的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案