已知{an}是首項為a,公差為1的等差數(shù)列,.若對任意的n∈N*,都有bn≤b8成立,則實數(shù)a的取值范圍是   
【答案】分析:由等差數(shù)列的通項公式,求得數(shù)列{an}的通項,進而求得bn,再由函數(shù)的性質(zhì)求得.
解答:解:∵{an}是首項為a,公差為1的等差數(shù)列
∴an=n+a-1bn

又∵對任意的n∈N*,都有bn≤b8成立,
則必有7+a-1<0且8+a-1>0,
∴-7<a<-6;
故答案為-7<a<-6.
點評:本題主要考查等差數(shù)列的通項公式,用函數(shù)處理數(shù)列思想的方法求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為19,公差為-2的等差數(shù)列,sn為{an}的前n項和.
(1)求通項an及sn;
(2)設{bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為1的等比數(shù)列,Sn是{an}的前n項和,且9S3=S6,則數(shù)列{
1
an
}
的前5項和為( 。
A、
85
32
B、
31
16
C、
15
8
D、
85
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為1的等差數(shù)列,其公差d>0,且a3,a7+2,3a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{an}的前n項和為Sn,求f(n)=
Sn(n+6) Sn+1
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為1的等比數(shù)列,sn是{an}的前n項和,且8a3=a6,則數(shù)列{an}的前5項和為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是首項為a1,公比為q(q≠1)的等比數(shù)列,其前n項和為Sn,且有
S10
S5
=
33
32
,設bn=2q+Sn
(1)求q的值;
(2)數(shù)列{bn}能否為等比數(shù)列?若能,請求出a1的值;若不能,請說明理由;
(3)在(2)的條件下,求數(shù)列{nbn}的前n項和Tn

查看答案和解析>>

同步練習冊答案