設(shè)函數(shù)f(x)=
1
3
x3+
1
2
(m-1)x2+x+2

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有2個極值點(diǎn),求實(shí)數(shù)m的取值范圍.
(Ⅰ)f'(x)=x2+(m+1)x+1,…(2分)
①當(dāng)△≤0,即(m-1)2-4≤0,-1≤m≤3時,
函數(shù)f(x)在(-∞,+∞)內(nèi)單調(diào)遞增;…(4分)
②當(dāng)△>0,即m<-1或m>3時,
令f'(x)=0,解得x=
1-m±
m2-2m-3
2
,…(6分)
所以,函數(shù)f(x)在(-∞,
1-m-
m2-2m-3
2
)
內(nèi)單調(diào)遞增;
(
1-m-
m2-2m-3
2
1-m+
m2-2m-3
2
)
內(nèi)單調(diào)遞減;
(
1-m+
m2-2m-3
2
,+∞)
內(nèi)單調(diào)遞增.…(8分)
(Ⅱ)若f'(x)=0在區(qū)間(0,2)內(nèi)有兩個不等實(shí)根,
△>0
0<
1-m
2
<2
f(2)>0
f(1)>0.
,解得-
3
2
<m<-1
.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河南模擬)設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時,過原點(diǎn)的直線與函數(shù)f(x)的圖象相切于點(diǎn)P,求點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng)0<a<
1
2
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
3
時,設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對于?x1∈(0,e],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.(e是自然對數(shù)的底,e<
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•株洲模擬)設(shè)x0是函數(shù)f(x)=(
1
3
)x-log2x
的零點(diǎn).若0<a<x0,則f(a)的值滿足(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x≤0)
x
     (x>0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍為
a>1或a<-2
a>1或a<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
(a-1)x3-
1
2
ax2+x
(a∈R)[
(Ⅰ)若y=f(x)在點(diǎn)(1,f(1))處的切線與y軸和直線x-2y=0圍成的三角形面積等于
1
4
,求a的值;
(II)當(dāng)a<2時,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x
(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案