分析 (1)利用同角三角函數(shù)基本關系式化簡所求,結合已知即可計算得解;
(2)利用誘導公式,同角三角函數(shù)基本關系式化簡所求,即可得解.
解答 解:(1)∵tanα=2,
∴$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$=$\frac{2+1}{2-1}$=3.---------------(5分)
(2)原式=$\frac{cosαsinαtanα}{(-tanα)(-sinα)}$=cosα.---------------(10分)
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{2\sqrt{3}}}{3}$ | C. | $\frac{{4\sqrt{3}}}{3}$ | D. | $-\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角 | B. | 等邊 | C. | 鈍角 | D. | 等腰或直角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-1,+∞) | C. | $({-1,-\frac{1}{3}})∪({-\frac{1}{3},+∞})$ | D. | $({-1,-\frac{1}{3}})∪({-\frac{1}{3},0}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com