已知銳角三角形ABC中,sin(A+B)=,sin(A-B)=
(Ⅰ)求證:tanA=2tanB;
(Ⅱ)設AB=3,求AB邊上的高.
【答案】分析:(1)把角放在銳角三角形中,使一些運算簡單起來,本題主要考查兩角和與差的正弦公式,根據(jù)分解后的結構特點,解方程組,做比得到結論.
(2)同角的三角函數(shù)之間的關系,換元解方程在直角三角形中,用定義求的結果
解答:(I)證明:∵sin(A+B)=,sin(A-B)=,
∴sinAcosB+cosAsinB=,sinAcosB-cosAsinB=
∴sinAcosB=,cosAsinB=,
∴tanA=2tanB.
(2)解:∵<A+B<π,,∴,
,將tanA=2tanB代入上式并整理得2tan2B-4tanB-1=0
解得,因為B為銳角,所以,∴tanA=2tanB=2+
設AB上的高為CD,則AB=AD+DB=,由AB=3得CD=2+
故AB邊上的高為2+
點評:以銳角三角形為載體,應用同角三角函數(shù)之間的關系,應用兩角和與差的正弦公式,求解過程中應用代數(shù)方法解題,構造直角三角形用銳角三角函數(shù)解決問題,這種問題做起來有一定難度.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知銳角三角形ABC中,sin(A+B)=
3
5
,sin(A-B)=
1
5

(Ⅰ)求證:tanA=2tanB;
(Ⅱ)設AB=3,求AB邊上的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角三角形△ABC內角A、B、C對應邊分別為a,b,c.tanA=
3
bc
b2+c2-a2

(Ⅰ)求A的大小;
(Ⅱ)求cosB+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角三角形ABC中,定義向量
m
=(sinB,-
3
),
n
=(cos2B,4cos2
B
2
-2),且
m
n

(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的單調減區(qū)間;
(2)若b=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知銳角三角形ABC中內角A、B、C的對邊分別為a,b,c,a2+b2=6abcosC,且sin2C=2sinAsinB.
(1)求角C的值;
(2)設函數(shù)f(x)=sin(ωx-
π
6
)-cosω
x
 
 
(ω>0)
,且f(x)圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•盧灣區(qū)二模)(文)已知銳角三角形ABC的三邊為連續(xù)整數(shù),且角A、B滿足A=2B.
(1)當
π
5
<B<
π
4
時,求△ABC的三邊長及角B(用反三角函數(shù)值表示);
(2)求△ABC的面積S.

查看答案和解析>>

同步練習冊答案