已知f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x-2.  
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.
分析:(1)先根據(jù)f(x)的圖象經(jīng)過點(diǎn)(0,1)求出c,然后根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導(dǎo)數(shù),從而求出切線的斜率,建立一等量關(guān)系,再根據(jù)切點(diǎn)在曲線上建立一等式關(guān)系,解方程組即可;
(2)首先對f(x)=
5
2
x4
-
9
2
x
2+1求導(dǎo),可得f'(x)=10x3-9x,令f′(x)>0解之即可求出函數(shù)的單調(diào)遞增區(qū)間.
解答:解:(1)f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,1),則c=1,
f'(x)=4ax3+2bx,k=f'(1)=4a+2b=1(4分)
切點(diǎn)為(1,-1),則f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(1,-1),
得a+b+c=-1,得a=
5
2
,b=-
9
2

f(x)=
5
2
x4
-
9
2
x
2+1(8分)
(2)f'(x)=10x3-9x>0,-
3
10
10
<x<0,或x>
3
10
10

單調(diào)遞增區(qū)間為(,-
3
10
10
,0),(
3
10
10
,+∞)(12分)
點(diǎn)評:本題考查導(dǎo)數(shù)的計(jì)算與應(yīng)用,注意導(dǎo)數(shù)計(jì)算公式的正確運(yùn)用與導(dǎo)數(shù)與單調(diào)性的關(guān)系,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,3),且在x=1處的切線方程是y=2x+1.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x﹣2. 

(1)求y=f(x)的解析式;

(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林省延邊州汪清六中高三(上)9月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x-2.  
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第3章 導(dǎo)數(shù)及其應(yīng)用》2013年單元測試卷B(解析版) 題型:解答題

已知f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x-2.  
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案