設服從X~(n,p)的隨機變量X的期望和方差分別是2.4與1.44,則二項分布的參數(shù)n、p的值分別為
 
分析:根據(jù)隨機變量符合二項分布,根據(jù)二項分布的期望和方差的公式和條件中所給的期望和方差的值,得到關于n和p的方程組,解方程組得到要求的兩個未知量.
解答:解:∵ξ服從二項分布B~(n,p)
由Eξ=2.4=np,Dξ=1.44=np(1-p),
可得1-p=
1.44
2.4
=0.6,
∴p=0.4,n=
2.4
0.4
=6.
故答案為:n=6,p=0.4
點評:本題主要考查分布列和期望的簡單應用,通過解方程組得到要求的變量,這與求變量的期望是一個相反的過程,但是兩者都要用到期望和方差的公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列四個命題中,正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•韶關二模)下列四個判斷:
①某校高三一班和高三二班的人數(shù)分別是m,n,某次測試數(shù)學平均分分別是a,b,則這兩個班的數(shù)學平均分為
a+b
2
;
②10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12,設其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本(x1,y1),(x2,y2),…,(xn,yn),若記
.
x
=
1
n
n
i=1
xi,
.
y
=
1
n
n
i=1
yi
則回歸直線y=bx+a必過點(
.
x
,
.
y
);
④已知ξ服從正態(tài)分布N(0,σ2),且p(-2≤ξ≤0)=0.3,則p(ξ>2)=0.2;
其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•臨沂二模)給出下列四個結論:
①“若am2<bm2,則a<b”的逆命題是真命題;
②設x,y∈R,則“x≥2或y≥2”是“x2+y2≥4”的充分不必要條件;
③函數(shù)y=loga(x+1)+1(a>0且a≠1)的圖象必過點(0,1);
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=0.2.
其中正確結論的序號是
②③
②③
.(填上所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設服從X~(n,p)的隨機變量X的期望和方差分別是2.4與1.44,則二項分布的參數(shù)n、p的值分別為______.

查看答案和解析>>

同步練習冊答案