數(shù)列{an}的前n項和記為Sn,a1=t,點(Sn,an+1)在直線y=2x+1上,n∈N*
(1)若數(shù)列{an}是等比數(shù)列,求實數(shù)t的值;
(2)設(shè)bn=nan,在(1)的條件下,求數(shù)列{bn}的前n項和Tn;
(3)設(shè)各項均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個數(shù)稱為這個數(shù)列{cn}的“積異號數(shù)”,令數(shù)學(xué)公式(n∈N*),在(2)的條件下,求數(shù)列{cn}的“積異號數(shù)”.

解:(1)由題意可得,當(dāng)n≥2時,有,
兩式相減,得 an+1 -an =2an,即an+1=3an (n≥2)
所以,當(dāng)n≥2時,{an}是等比數(shù)列,要使n≥1時{an}是等比數(shù)列,
則只需,從而得出t=1.
(2)由(1)得,等比數(shù)列{an}的首項為a1=1,公比q=3,∴

,①(7分)
上式兩邊乘以3得②,
①-②得

(3)由(2)知,∵,
,∴c1c2=-1<0.
,∴數(shù)列{cn}遞增.
,得當(dāng)n≥2時,cn>0.
∴數(shù)列{cn}的“積異號數(shù)”為1.
分析:(1)根據(jù)數(shù)列的第n項與前n項和的關(guān)系可得n≥2時,有,化簡得an+1=3an (n≥2),要使n≥1時{an}是等比數(shù)列,只需,從而得出t的值.
(2)由(1)得,等比數(shù)列{an}的首項為a1=1,公比q=3,故有,從而得到,用錯位相減法求出數(shù)列{bn}的前n項和Tn
(3)由條件求得,計算可得c1c2=-1<0,再由cn+1-cn>0可得,數(shù)列{cn}遞增,由,得當(dāng)n≥2時,cn>0,由此求得數(shù)列{cn}的“積異號數(shù)”為1.
點評:本題主要考查等比關(guān)系的確定,用錯位相減法對數(shù)列進行求和,數(shù)列的第n項與前n項和的關(guān)系,數(shù)列與函數(shù)的綜合,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當(dāng)n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)

(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*,
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
1
3
,
2
3
,
1
4
2
4
,
3
4
,
1
5
2
5
,
3
5
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結(jié)論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4

④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結(jié)論是
①③④
①③④
.(將你認(rèn)為正確的結(jié)論序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案