如圖,在三棱錐中,已知△是正三角形,平面,,為的中點(diǎn),在棱上,且,
(1)求證:平面;
(2)求平面與平面所成的銳二面角的余弦值;
(3)若為的中點(diǎn),問上是否存在一點(diǎn),使平面?若存在,說明點(diǎn)的位置;若不存在,試說明理由.
略
【解析】解一:(1)取AC的中點(diǎn)H,因?yàn)?AB=BC,所以 BH⊥AC.
因?yàn)?AF=3FC,所以 F為CH的中點(diǎn).
因?yàn)?E為BC的中點(diǎn),所以 EF∥BH.則EF⊥AC.
因?yàn)?△BCD是正三角形,所以 DE⊥BC.
因?yàn)?AB⊥平面BCD,所以 AB⊥DE.
因?yàn)?AB∩BC=B,所以 DE⊥平面ABC.所以 DE⊥AC.
因?yàn)?DE∩EF=E,所以 AC⊥平面DEF
(2)
(3)存在這樣的點(diǎn)N,
當(dāng)CN=時(shí),MN∥平面DEF.
連CM,設(shè)CM∩DE=O,連OF.
由條件知,O為△BCD的重心,CO=CM.
所以 當(dāng)CF=CN時(shí),MN∥OF.所以 CN=
解二:建立直角坐標(biāo)系
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆四川省攀枝花市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn).
(1)求證:∥平面;
(2)若,,求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆吉林省高一下學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn)
⑴ 求證:∥平面
⑵ 若,,求證:平面⊥平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高一3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖:在三棱錐中,已知點(diǎn)、、分別為棱、、的中點(diǎn).
(1)求證:∥平面;
(2)若,,求證:平面⊥平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com