12.用1、2、3、4、5這五個數(shù)字,可以組成的三位數(shù)的個數(shù)為(  )
A.125B.60C.120D.90

分析 由已知5個數(shù)字1、2、3、4、5,任取三個數(shù)組成一個三位數(shù),那么百位數(shù)有5種選擇;十位數(shù)有5種選擇;個位數(shù)有5種選擇.再運用乘法原理解答.

解答 解:由題意百位數(shù)有5種選擇;十位數(shù)有5種選擇;個位數(shù)有5種選擇.運用乘法原理共有5×5×5=125個.
故選:A.

點評 此題考查的知識點是乘法原理的應(yīng)用.關(guān)鍵是要知道組成的三位數(shù),百位數(shù)有5種選擇;十位數(shù)有5種選擇;個位數(shù)有5種選擇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若a1=3,a2=6,an+2=an+1-an,則a33=(  )
A.3B.-3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=-cos2x+2sinx+2的最小值為( 。
A.0B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{5}{2-i}$的共軛復(fù)數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3+x2+ax+b.
(Ⅰ)當(dāng)a=-1時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)f(x)的圖象與直線y=ax恰有兩個不同的公共點,求實數(shù)b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:x2=2py(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M、N兩點,且|MN|=8
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C的切線,且l∥MN,P為l上一點,求$\overrightarrow{PM}•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a=$\sqrt{3}$+2$\sqrt{2}$,b=2+$\sqrt{7}$,則a、b的大小關(guān)系為?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.拋物線x=$\frac{1}{4}$y2的焦點到準線的距離為( 。
A.$\frac{1}{8}$B.$\frac{1}{2}$C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知定義在R上的奇函數(shù)f(x)滿足:當(dāng)x≥0時,f(x)=x-sinx,若不等式f(-4t)>f(2m+mt2)對任意實數(shù)t恒成立,則實數(shù)m的取值范圍是( 。
A.(-∞,-$\sqrt{2}$)B.(-$\sqrt{2}$,0)C.(-∞,0)∪($\sqrt{2}$,+∞)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案