已知向量a=(2,1),b=(1,k),且a與b的夾角為銳角,則實(shí)數(shù)k的取值范圍是( )
A.(-2,+∞) B.(-2,)∪(,+∞)
C.(-∞,-2) D.(-2,2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:填空題
已知數(shù)列{an}中a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S15=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題
已知復(fù)數(shù)z滿足(1+i)z=3+i(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:選擇題
已知平行四邊形ABCD中,AC為一條對(duì)角線,若=(2,4),=(1,3),則·=( )
A.-8 B.-6 C.6 D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題
已知點(diǎn)O(0,0)、A(1,2)、B(4,5)及=+t,試問:
(1)t為何值時(shí),P在x軸上?在y軸上?P在第三象限?
(2)四邊形OABP能否成為平行四邊形?若能,求出相應(yīng)的t值;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:選擇題
已知向量a=(1,k),b=(2,2),且a+b與a共線,那么a·b的值為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:填空題
正三角形ABC邊長(zhǎng)為2,設(shè)=2,=3,則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-8解三角形應(yīng)用舉例(解析版) 題型:填空題
如圖,在日本地震災(zāi)區(qū)的搜救現(xiàn)場(chǎng),一條搜救狗從A處沿正北方向行進(jìn)x m到達(dá)B處發(fā)現(xiàn)一個(gè)生命跡象,然后向右轉(zhuǎn)105°,行進(jìn)10 m到達(dá)C處發(fā)現(xiàn)另一生命跡象,這時(shí)它向右轉(zhuǎn)135°后繼續(xù)前行回到出發(fā)點(diǎn),那么x=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-5兩角和與差的正弦、余弦和正切(解析版) 題型:解答題
已知函數(shù)f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間[0,]上的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com