給出下列四個命題:(1)若sin2A=sin2B,則△ABC是等腰三角形;(2)若sinA=cosB,則△ABC是直角三角形;(3)若<2,則△ABC是鈍三角形;(4)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC是直角三角形;以上命題正確的個數(shù)是

[  ]

A.1個
B.2個
C.3個
D.4個
答案:A
提示:

本題考查三角形內(nèi)三角關(guān)系的基礎(chǔ)知識.在三角形內(nèi)討論三角問題,三內(nèi)角有范圍限制,A,B,C(0,π),若sin2Asin2B,則2A2B2A=π-2B,故三角形為等腰三角形式直角三角形,故(1)錯誤,三角形內(nèi)的三角函數(shù)問題,處理的方法與一般三角函數(shù)問題沒有區(qū)別,因此討論sinAsinB,仍需統(tǒng)一三角函數(shù)名稱,化正弦為余弦或化余弦為正弦,故sinAsin(B),故ABAB,三角形未必是直角三角形.討論2,需要降次,利用二倍角的余弦公式,cos2Acos2Bcos2C10,化簡三角形內(nèi)三角函數(shù)問題,注意隱含條件ABC=π的運用,利用和差化積公式可得cosAcosBcosC0,可得三角形為鈍角三角形.若cos(AB)cos(BC)cos(CA)1,注意三角函數(shù)值的范圍,故cos(AB)cos(BC)cos(CA)1可得ABC,故三角形為正三角形.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案