已知{an}是等差數(shù)列,且a6=10,當(dāng)a1•a2取得最小值時,公差d=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)等差數(shù)列的通項(xiàng)公式,求出首項(xiàng)和公差的關(guān)系,然后利用一元二次函數(shù)的性質(zhì)即可得到結(jié)論.
解答: 解:∵a6=10,
∴a1+5d=10,
即a1=10-5d,
∴a1•a2=a1•(a1+d)=(10-5d)(10-4d)=20d2-90d+100,
∴當(dāng)d=-
b
2a
=-
-90
2×20
=
9
4
時,a1•a2取得最小值,
∴d=
9
4
,
故答案為:
9
4
點(diǎn)評:本題主要考查等差數(shù)列的通項(xiàng)公式的應(yīng)用,將條件轉(zhuǎn)化為關(guān)于d的一元二次函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

通過隨機(jī)詢問某校110名高中學(xué)生在購買食物時是否看營養(yǎng)說明,得到如下的列聯(lián)表:
    總計(jì)  
  看營養(yǎng)說明 50 30 80  
  不看營養(yǎng)說明 10 20 30  
  總計(jì) 60 50 110  
P(k2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(1)從這50名女生中按是否看營養(yǎng)說明采取分層抽樣,抽取一個容量為5的樣本,問樣本中看與不看營養(yǎng)說明的女生各有多少名?
(2)根據(jù)列聯(lián)表,問有多大把握認(rèn)為“性別與在購買食物時看營養(yǎng)說明”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=4x3+k•
3x
+1(k∈R),若f(2)=8,則f(-2)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=1
,若
a
b
的夾角為60°,則|
a
+2
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某班甲、乙、丙等10名同學(xué)中選出3個人參加漢字聽寫,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過雙曲線
x2
4
-y2=1
的右焦點(diǎn)且垂直于x軸的直線被雙曲線截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
12
=1
的離心率等于
 
;漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
m
=1
的一個焦點(diǎn)坐標(biāo)是(5,0),則雙曲線的漸近線方程是( 。
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
2
2
3
x
D、y=±
3
2
4
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,a=80,b=100,A=30°,則此三角形(  )
A、一定是銳角三角形
B、一定是直角三角形
C、一定是鈍角三角形
D、可能是鈍角三角形,也可能是銳角三角形

查看答案和解析>>

同步練習(xí)冊答案