橢圓的右焦點(diǎn)為,右準(zhǔn)線為,離心率為,點(diǎn)在橢圓上,以為圓心,為半徑的圓與的兩個(gè)公共點(diǎn)是

(1)若是邊長(zhǎng)為的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線上,且原點(diǎn)到直線的距離為,求橢圓方程.
(1)。(2). 

試題分析:設(shè)橢圓的半長(zhǎng)軸是,半短軸是,半焦距離是,
由橢圓的離心率為,可得橢圓方程是,        2分
(只要是一個(gè)字母,其它形式同樣得分,)
焦點(diǎn),準(zhǔn)線,設(shè)點(diǎn),
(1)是邊長(zhǎng)為的等邊三角形,
則圓半徑為,且到直線的距離是,
到直線的距離是,
所以,,所以
所以,圓的方程是。              6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012857591243.png" style="vertical-align:middle;" />三點(diǎn)共線,且是圓心,所以是線段中點(diǎn),
點(diǎn)橫坐標(biāo)是得,,           8分
再由得:,
所以直線斜率             10分
直線,            12分
原點(diǎn)到直線的距離,
依題意,,所以,
所以橢圓的方程是.            15分
點(diǎn)評(píng):解答此類綜合題時(shí),應(yīng)根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關(guān)系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學(xué)生在解決問題時(shí)要充分利用數(shù)形結(jié)合、設(shè)而不求、弦長(zhǎng)公式及韋達(dá)定理綜合思考,重視對(duì)稱思想、函數(shù)與方程思想、等價(jià)轉(zhuǎn)化思想的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長(zhǎng)度單位一致,建立平面直角坐標(biāo)系.過圓上的一點(diǎn)作平行于軸的直線,設(shè)軸交于點(diǎn),向量
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn) ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線的準(zhǔn)線經(jīng)過橢圓的左焦點(diǎn),且經(jīng)過拋物線與橢圓兩個(gè)交點(diǎn)的弦過拋物線的焦點(diǎn),則橢圓的離心率為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系中,若雙曲線的焦距為8,則  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

焦點(diǎn)在軸上,漸近線方程為的雙曲線的離心率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù))的圖象恒過定點(diǎn),橢圓
)的左,右焦點(diǎn)分別為,直線經(jīng)過點(diǎn)且與⊙相切.
(1)求直線的方程;
(2)若直線經(jīng)過點(diǎn)并與橢圓軸上方的交點(diǎn)為,且,求內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線Cy=2x2,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要實(shí)現(xiàn)不被曲線C擋住,則實(shí)數(shù)a的取值范圍是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點(diǎn),過原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的左右焦點(diǎn)分別為,且恰為拋物線的焦點(diǎn),設(shè)雙曲線與該拋物線的一個(gè)交點(diǎn)為,若是以為底邊的等腰直角三角形,則雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案