不等式ln(1+x)-
14
x2≤M恒成立,則M的最小值為
 
分析:問(wèn)題轉(zhuǎn)化為M大于等于f(x)=ln(1+x)-
1
4
x2
的最大值,要求函數(shù)的最值,求出導(dǎo)函數(shù)令其為零得到駐點(diǎn),然后分區(qū)間討論函數(shù)的增減性,求出函數(shù)的極大值,考慮閉區(qū)間兩個(gè)端點(diǎn)對(duì)應(yīng)的函數(shù)值的大小,最后判斷出最大值即可.
解答:解:令f(x)=ln(1+x)-
1
4
x2
,則問(wèn)題轉(zhuǎn)化為M大于等于f(x)的最大值.
f′(x)=
1
1+x
-
1
2
x

1
1+x
-
1
2
x=0
,
化簡(jiǎn)為x2+x-2=0,解得x1=-2(舍去),x2=1.
當(dāng)-1<x<1時(shí),f'(x)>0,f(x)單調(diào)增加;
當(dāng)x>1時(shí),f'(x)<0,f(x)單調(diào)減少.
所以 f(1)=ln2-
1
4
為函數(shù)f(x)的極大值.
又因?yàn)閒(0)=0,f(2)=ln3-1>0,f(1)>f(2),
所以f(1)=ln2-
1
4
為函數(shù)f(x)在(-1,+∞)上的最大值.
∴M≥In2-
1
4

則M的最小值為In2-
1
4

故答案為:In2-
1
4
點(diǎn)評(píng):本小題主要考查函數(shù)的導(dǎo)數(shù)計(jì)算,利用導(dǎo)數(shù)討論函數(shù)的性質(zhì),判斷函數(shù)的最值以及綜合運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1).
(Ⅰ)用數(shù)學(xué)歸納法證明:an≥2(n≥2);
(Ⅱ)已知不等式ln(1+x)<x對(duì)x>0成立,證明:an<e2(n≥1),其中無(wú)理數(shù)e=2.71828….

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是在(0,+∞)上每一點(diǎn)處可導(dǎo)的函數(shù),若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求證:函數(shù)g(x)=
f(x)
x
在(0,+∞)上單調(diào)遞增;
(Ⅱ)當(dāng)x1>0,x2>0時(shí),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0時(shí)恒成立,證明:
1
22
ln22+
1
32
ln32+
1
42
ln42+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿(mǎn)足a1=1且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1)

(1)用數(shù)學(xué)歸納法證明:an≥2(n≥2)
(2)設(shè)bn=
an+1-an
an
,證明數(shù)列{bn}的前n項(xiàng)和Sn
7
4

(3)已知不等式ln(1+x)<x對(duì)x>0成立,證明:an<2e
3
4
(n≥1)(其中無(wú)理數(shù)e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ln(ax+b)-x,其中a>0,b>0
(1)求f(x)在[0,+∞)上是減函數(shù)的充要條件;
(2)求f(x)在[0,+∞)上的最大值;
(3)解不等式ln(1+
x-
1
x
)-
x-
1
x
≤ln2-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案