已知Rt△ABC所在平面外一點(diǎn)P到直角頂點(diǎn)C的距離是24 cm,到兩直角邊的距離是cm.求點(diǎn)P到平面ABC的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)必修二數(shù)學(xué)北師版 北師版 題型:047

如下圖所示,已知Rt△ABC所在平面外一點(diǎn)S,且SA=SB=SC

(1)求證:點(diǎn)S與斜邊AC中點(diǎn)D的連線SD⊥面ABC;

(2)若直角邊BA=BC,求證:BD⊥面SAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC的斜邊AB在平面α內(nèi),AC、BC分別與α成30°、45°角,則α與△ABC所在平面所成二面角的度數(shù)為(    )

A.30°              B.45°             C.60°                D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆北京四中高二上學(xué)期期中測(cè)試數(shù)學(xué) 題型:解答題

已知Rt△ABC的頂點(diǎn)坐標(biāo)A(-3,0),直角頂點(diǎn)B(-1,-),頂點(diǎn)C在軸上。

       (1)求BC邊所在直線的方程;

       (2)圓M為Rt△ABC外接圓,其中M為圓心,求圓M的方程;

       (3)直線與Rt△ABC外接圓相切于第一象限,求切線與兩坐標(biāo)軸所圍成的三角形面積最小時(shí)的切線方程。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC所在平面外一點(diǎn)S滿足SA=SB=SC,D為斜邊AC的中點(diǎn).

(1)求證:SD⊥平面ABC;

(2)若AB=BC,求證:BD⊥平面SAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案