8.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0,若a是從區(qū)間[0,4]上任取的一個數(shù),b是從區(qū)間[0,3]上任取的一個數(shù),求上述方程有實根的概率.

分析 本題是一個幾何概型,試驗的全部結(jié)果所構(gòu)成的區(qū)域為{(a,b)|0≤a≤4,0≤b≤3},而構(gòu)成事件A的區(qū)域為{(a,b)|0≤a≤4,0≤b≤3,a≥b},根據(jù)幾何概型公式得到結(jié)果.

解答 解:設(shè)事件A為“方程x2+2ax+b2=0有實根”.
則△=4a2-4b2≥0,即a2≥b2
又∵a≥0,b≥0,
∴a≥b.
試驗的全部結(jié)果所構(gòu)成的區(qū)域為{(a,b)|0≤a≤4,0≤b≤3},而構(gòu)成事件A的區(qū)域為{(a,b)|0≤a≤4,0≤b≤3,a≥b},即如圖所示的陰影部分:

∴P(A)=$\frac{3×4-\frac{1}{2}×{3}^{2}}{4×3}$=$\frac{5}{8}$.

點評 本題給出含有字母參數(shù)的一元二次方程,求方程有實數(shù)根的概率.著重考查了一元二次方程根的判別式、不等式表示的平面區(qū)域、面積公式和幾何概型計算公式等知識,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC中,角A,B,C的對邊分別為a,b,c,已知c=12,b=4$\sqrt{6}$,O為△ABC的外接圓的圓心.
①若cosA=$\frac{4}{5}$,求△ABC的面積S;
②若D為BC邊上任意一點,$\overrightarrow{DO}-\overrightarrow{DA}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知過點P(m,0)的直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)).以平面直角坐標系的原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程式為ρ=2cosθ.
(Ⅰ)求直線l的普通方程和曲線C的直角坐標方程;
(Ⅱ)若直線l與曲線C交于兩點A,B,且|PA|•|PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知E,F(xiàn),G,H分別是空間四邊形四條邊AB,BC,CD,DA的中點,
(1)求證四邊形EFGH是平行四邊
(2)若AC⊥BD時,求證:EFGH為矩形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,M為棱AC中點.AB=BC,AC=2,AA1=$\sqrt{2}$
(1)求證:B1C∥平面A1BM
(2)求證:平面AC1B1⊥平面A1BM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若a>b,則下列正確的是( 。
1.a(chǎn)2>b2    2.a(chǎn)c>bc    3.a(chǎn)c2>bc2  4.a(chǎn)-c>b-c.
A.4B.2,3C.1,4D.1,2,3,4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列對應(yīng)是集合A到集合B的映射的是( 。
A.A=N*,B=N*,f:x→|x-3|
B.A={平面內(nèi)的圓},B={平面內(nèi)的三角形},f:作圓的內(nèi)接三角形
C.A={x|0≤x≤2},B={y|0≤y≤6},f:x→y=$\frac{1}{2}x$
D.A={0,1},B={-1,0,1},f:A中的數(shù)開平方根

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,設(shè)數(shù)列{an}的前n項和為Sn,則S2017=( 。
A.1007B.1008C.1009.5D.1010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若集合A={x|2x>x2},B={y|y=2x,x∈A},則集合A∩B等于( 。
A.(0,2)B.(0,4)C.(1,2)D.(0,+∞)

查看答案和解析>>

同步練習冊答案