橢圓上的點(diǎn)到直線的最大距離是                

試題分析:∵橢圓方程為∴可設(shè)橢圓上的任意一點(diǎn)P坐標(biāo)為(4cosα,2sinα)∴P到直線的距離d=∵?4≤4∴d的最大值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓.稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為
(1)求橢圓C的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),試判斷是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,離心率為的橢圓上的點(diǎn)到其左焦點(diǎn)的距離的最大值為3,過橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn)、、,且滿足,其中為常數(shù),過點(diǎn)的平行線交橢圓于兩點(diǎn).

(1)求橢圓的方程;
(2)若點(diǎn),求直線的方程,并證明點(diǎn)平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,離心率為.設(shè)是橢圓長軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)且斜率為的直線交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點(diǎn),其離心率
(1)求橢圓的方程;
(2)過坐標(biāo)原點(diǎn)作不與坐標(biāo)軸重合的直線交橢圓兩點(diǎn),過軸的垂線,垂足為,連接并延長交橢圓于點(diǎn),試判斷隨著的轉(zhuǎn)動(dòng),直線的斜率的乘積是否為定值?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在原點(diǎn)的橢圓的右焦點(diǎn)為,離心率等于,則橢圓的方程是(    ) 
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在區(qū)間上分別取一個(gè)數(shù),記為,則方程,表示焦點(diǎn)在y軸上的橢圓的概率是     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,A是右頂點(diǎn),B是虛軸的上端點(diǎn),F(xiàn)是左焦點(diǎn),
當(dāng)BF⊥AB時(shí),此類雙曲線稱為“黃金雙曲線”,其離心率為,類比“黃金雙曲線”,推算出“黃金橢圓”(如圖)的離心率=_________;

查看答案和解析>>

同步練習(xí)冊(cè)答案