【題目】光線l1從點(diǎn)M(﹣1,3)射到x軸上,在點(diǎn)P(1,0)處被x軸反射,得到光線l2 , 再經(jīng)直線x+y﹣4=0反射,得到光線l3 , 求l2和l3的方程.

【答案】解:∵M(jìn)(﹣1,3)關(guān)于x軸的對(duì)稱點(diǎn)為M'(﹣1,﹣3),則直線l2經(jīng)過點(diǎn)M′和點(diǎn)P,

又P(1,0),∴l(xiāng)2的直線方程為

設(shè)直線l2與直線x+y﹣4=0的交點(diǎn)為N,由 求得

設(shè)P(1,0)關(guān)于直線x+y﹣4=0的對(duì)稱點(diǎn)為P'(x0,y0),則有 ,

整理得 ,解得P'(4,3),由l3的經(jīng)過點(diǎn)N和點(diǎn)P′,

可得l3的方程為 ,即2x﹣3y+1=0.


【解析】求得M(﹣1,3)關(guān)于x軸的對(duì)稱點(diǎn)為M'(﹣1,﹣3),則由直線l2經(jīng)過點(diǎn)M′和點(diǎn)P,再由點(diǎn)斜式求得l2的直線方程.同理,設(shè)直線l2與直線x+y﹣4=0的交點(diǎn)為N,求得N的坐標(biāo),求得P(1,0)關(guān)于直線x+y﹣4=0的對(duì)稱點(diǎn)為P'(x0,y0),根據(jù)l3的經(jīng)過點(diǎn)N和點(diǎn)P′,由點(diǎn)斜式求得l3的方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2x+a2﹣4)的定義域、值域都為R,則a取值的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +lg(x+1)的定義域?yàn)椋?/span>
A.[﹣1,2]
B.[﹣1,2)
C.(﹣1,2]
D.(﹣1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題q:對(duì)任意實(shí)數(shù)x,不等式x2﹣2x+m≥0恒成立;命題q:方程 表示焦點(diǎn)在x軸上的雙曲線.
(1)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若命題:“p∨q”為真命題,且“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD為正方形,側(cè)面PAD為直角三角形,且PA=PD,面PAD⊥面ABCD,E、F分別為AB、PD的中點(diǎn).
(Ⅰ)求證:EF∥面PBC;
(Ⅱ)求證:AP⊥面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)M是左側(cè)面ADD1A1上的一個(gè)動(dòng)點(diǎn),滿足 =1,則 的夾角的最大值為(

A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為全體實(shí)數(shù)R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(RA)∩B;
(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=3sin(2x﹣ )的圖象向左平移 個(gè)單位后,所在圖象對(duì)應(yīng)的函數(shù)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下莖葉圖記錄了甲、乙兩個(gè)籃球隊(duì)在3次不同比賽中的得分情況.乙隊(duì)記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以m表示.那么在3次比賽中,乙隊(duì)平均得分超過甲隊(duì)平均得分的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案