已知圓N的標(biāo)準(zhǔn)方程為(y-5)2+(y-6)2=a2(a>0),若點(diǎn)P(3,3)與Q(5,3)有一點(diǎn)在圓內(nèi),另一點(diǎn)在圓外,則a的取值范圍是
 
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:利用兩點(diǎn)間的距離公式求出距離即可.
解答: 解:圓心坐標(biāo)為N(5,6),
則NP=
(5-3)2+(6-3)2
=
4+9
=
13
,
NQ=6-3=3<NP,
若點(diǎn)P(3,3)與Q(5,3)有一點(diǎn)在圓內(nèi),另一點(diǎn)在圓外,
則3<a<
13

故答案為:(3,
13
點(diǎn)評:本題主要考查點(diǎn)和圓的位置關(guān)系的應(yīng)用,根據(jù)兩點(diǎn)間的距離公式求出距離是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年05月11日,深圳市遭遇了近6年來最強(qiáng)的特大暴雨襲擊,資料顯示,降雨強(qiáng)度分級如下表所示:
 日降雨量(厘米) 5~9.9 10~24.9≥25
 降雨等級 暴雨 大暴雨 特大暴雨
 標(biāo)識   
深圳中學(xué)某社團(tuán)為研究此次降雨過程中降雨強(qiáng)度特征,首先隨機(jī)從深圳市10個(gè)區(qū)選出羅湖、南山、寶安三個(gè)區(qū),然后采用分層抽樣的方式從三個(gè)區(qū)的40個(gè)(其中羅湖12個(gè)、南山16個(gè)、寶安12個(gè))降雨觀測點(diǎn)中抽取10個(gè),分別記錄降雨量,得到右側(cè)的莖葉圖.
(1)求該社團(tuán)從寶安區(qū)抽取了多少個(gè)觀測點(diǎn)?
(2)估計(jì)本次深圳降雨的平均日降雨量和日降雨量的中位數(shù);
(3)若從降雨為特大暴雨的觀測點(diǎn)中隨機(jī)選3個(gè),求至少有1個(gè)觀測點(diǎn)日降雨量大于34厘米的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)cos
3
2
,sin
1
10
,-cos
7
4
的大小關(guān)系是( 。
A、cos
3
2
>sin
1
10
>-cos
7
4
B、cos
3
2
>-cos
7
4
>sin
1
10
C、cos
3
2
<sin
1
10
<-cos
7
4
D、-cos
7
4
<cos
3
2
<sin
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
π
3
)+
3
cosx,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,設(shè)內(nèi)角A,B,C所對的邊分別為a,b,c.若f(A)=
3
2
且a=
3
2
b,試求角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,運(yùn)行算法的偽代碼后,則輸出S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=|logax|(0<a<1)的定義域?yàn)閇m,n](m<n),值域?yàn)閇0,1],若n-m的最小值為
1
4
,則實(shí)數(shù)a的值為(  )
A、
1
4
B、
3
4
C、
4
5
D、以上都錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-2,5),
b
=(-1,7),實(shí)數(shù)x,y滿足x
a
+y
b
=(-1,2),求x,y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義,D={x∈R|x≠0}上的函數(shù)f(x)滿足兩個(gè)條件:①f(1)>0; ②對于任意x、y∈D,都有f(x)f(y)-f(xy)=
x2+y2
xy

(Ⅰ)求f(1)的值,并求函數(shù)f(x)解析式;
(Ⅱ)求過點(diǎn)(-1,
1
4
)的曲線y=f(x)的切線的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等比數(shù)列,其前n項(xiàng)和為Sn,則“a1>0”是“S5>S4”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案