精英家教網 > 高中數學 > 題目詳情
將一顆骰子先后拋擲兩次,得到的點數分別記為a,b.
(1)求點P(a,b)落在區(qū)域內的概率;
(2)求直線ax+by+5=0與圓x2+y2=1不相切的概率.
【答案】分析:(1)由題意知本題是一個古典概型,試驗發(fā)生包含的事件是先后兩次拋擲一枚骰子,滿足條件的事件是點落在規(guī)定區(qū)域,畫出可行域,找出符合條件的整點,做比值得到結果.
(2)根據上一問做出的結果知試驗發(fā)生包含的事件數是36,滿足條件的事件是直線ax+by+5=0與圓x2+y2=1不相切,可以先做出直線ax+by+5=0與圓x2+y2=1相切的概率,根據對立事件的概率公式得到結果.
解答:解:(1)由題意知本題是一個古典概型,試驗發(fā)生包含的事件是先后兩次拋擲一枚骰子,將得到的點數分別記a,b,則事件總數為6×6=36.
滿足條件的事件是點落在規(guī)定區(qū)域,
表示的平面區(qū)域如圖所示:
當a=1時,b=1,2,3,4;
a=2時,b=1,2,3
a=3時,b=1,2;
a=4時,b=1
共有(1,1)(1,2)(4,1)10種情況.
∴P==
(2)由題意知本題是一個古典概型,試驗發(fā)生包含的事件是先后兩次拋擲一枚骰子,
將得到的點數分別記a,b,則事件總數為6×6=36.
∵直線ax+by+5=0與圓x2+y2=1相切的充要條件是=1
即a2+b2=25,
∵a、b∈{1,2,3,4,5,6}
滿足條件的情況只有:a=3,b=4或a=4,b=3兩種情況,
∴直線與圓相切的概率P==
∴直線ax+by+5=0與圓x2+y2=1不相切的概率為P=1-=
點評:本題考查古典概型,考查對立事件的概率,考查簡單的線性規(guī)劃和直線與圓的位置關系,是一個綜合題,本題解題的難點不是古典概型,而是題目中出現的其他的知識點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

將一顆骰子先后拋擲兩次,得到的點數分別記為a,b.
(1)求點P(a,b)落在區(qū)域
x≥0
y≥0
x+y-5≤0
內的概率;
(2)求直線ax+by+5=0與圓x2+y2=1不相切的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

將一顆骰子先后拋擲兩次,觀察向上的點數,則兩次觀察到的點數之和為數字
 
的概率是
16

查看答案和解析>>

科目:高中數學 來源: 題型:

將一顆骰子先后拋擲兩次,記下其向上的點數,試問:
(1)“點數之和為6”與“點數之和為8”的概率是否一樣大?從中你能發(fā)現什么樣的一般規(guī)律?(直接寫出結論,不必證明)
(2)求至少出現一次5點或6點的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

將一顆骰子先后拋擲兩次,則兩次向上的點數之和是8的概率為
5
36
5
36

查看答案和解析>>

科目:高中數學 來源:2010-2011年廣東省汕頭市高二下學期期中考試理數 題型:填空題

將一顆骰子先后拋擲兩次,在朝上一面數字之和不大于6的條件下,兩次都為奇數的概率是          .

 

查看答案和解析>>

同步練習冊答案