某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知學生小張只選甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用ξ表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(Ⅰ)求學生小張選修甲的概率;
(Ⅱ)記“函數(shù)f(x)=x2+ξx為R上的偶函數(shù)”為事件A,求事件A的概率;
(Ⅲ)求ξ的分布列和數(shù)學期望.
分析:(I)利用相互獨立事件的概率公式及相互對立事件的概率公式列出方程求出學生小張選修甲的概率.
(II)先判斷出事件A表示的實際事件,再利用互斥事件的概率公式及相互獨立事件的概率公式求出事件A的概率;
(II)求出ξ可取的值,求出取每個值的概率值,列出分布列,利用數(shù)學期望公式求出隨基本量的期望值.
解答:解:(Ⅰ)設學生小張選修甲、乙、丙的概率分別為x、y、z
依題意得
x(1-y)(1-z)=0.08
xy(1-z)=0.12
1-(1-x)(1-y)(1-z)=0.88
解得
x=0.4
y=0.6
z=0.5

所以學生小張選修甲的概率為0.4
(Ⅱ)若函數(shù)f(x)=x2+ξx為R上的偶函數(shù),則ξ=0
當ξ=0時,表示小張選修三門功課或三門功課都沒選.
∴P(A)=P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24
∴事件A的概率為0.24
(Ⅲ)依題意知ξ=0,2
則ξ的分布列為
ξ 0 2
P 0.24 0.76
∴ξ的數(shù)學期望為Eξ=0×0.24+2×0.76=1.52
點評:求隨基本量的分布列,應該先判斷出隨基本量可取的值,再求出取每一個值的概率值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知某學生選修甲而不選修乙和丙的概率為0.08,選修甲和乙而不選修丙的概率是0.12,至少選修一門的概率是0.88,用ξ表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.
(1)記“函數(shù)f(x)=x2+ξ•x為R上的偶函數(shù)”為事件A,求事件A的概率;
(2)求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響.已知某學生選修甲而不選修乙和丙的概率為0.08,選修甲和乙而不選修丙的概率是0.12,至少選修一門課的概率是0.88,用表示該學生選修的課程門數(shù)和沒有  選修的課程門數(shù)的乘積.

(1)記“函數(shù)f(x)=x2+·x為R上的偶函數(shù)”為事件A,求事件A的概率;

(2)求的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省等三校高三2月月考數(shù)學理卷 題型:解答題

(本小題滿分14分)

某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響. 已知學生小張只選甲的概率為,只選修甲和乙的概率是,至少選修一門的概率是,用表示小張選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

   (Ⅰ)求學生小張選修甲的概率;

(Ⅱ)記“函數(shù) 為上的偶函數(shù)”為事件,求事件的概率;

                (Ⅲ)求的分布列和數(shù)學期望。                                    

      

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆河南鄭州市高二下學期第二次月考試題數(shù)學(理科) 題型:解答題

某大學開設甲、乙、丙三門選修課,學生是否選修哪門課互不影響. 已知某學生只選修甲的概率為0.08,只選修甲和乙的概率是0.12,至少選修一門的概率是0.88,用表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積.

   記“函數(shù)為R上的偶函數(shù)”為事件A,求事件A的概率;

 

查看答案和解析>>

同步練習冊答案