精英家教網 > 高中數學 > 題目詳情

橢圓的一個頂點和兩個焦點構成等腰直角三角形,則此橢圓的離心率為(   )

A.         B.         C.          D. 

 

【答案】

C

【解析】

試題分析:由圖形可知直角三角形的兩直角邊都為,斜邊為,由勾股定理的

考點:橢圓離心率求解

點評:求離心率關鍵是結合圖形找到關于的關系

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C的中心為直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1
(1)求橢圓C的方程;
(2)若P為橢圓C的動點,M為過P且垂直于x軸的直線上的點,
OP|OM|
=e
,e為橢圓C的離心率,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C的中心為直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的點,
|OP||OM|
=λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F1(-1,0)為橢圓的左焦點,右焦點為F2,其短軸的一個端點和兩個焦點構成等邊三角形的三個頂點,點E(0,
1
2
).
(1)求橢圓C的方程;
(2)AB是橢圓C的一條過點F1且斜率為1的弦,求△ABF2的面積S;
(3)問是否存在直線l:kx+m,使l與橢圓C交于M、N兩點,且(
EM
+
EN
)•(
EM
-
EN
)=0.若存在,求k的取值范圍.若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2014屆陜西省西安市高二上學期期末考試理科數學卷(解析版) 題型:解答題

已知橢圓的中心為直角坐標系的原點,焦點在軸上,它的一個頂點到兩個焦點的距離分別是7和1

(1)求橢圓的方程

(2)若為橢圓的動點,為過且垂直于軸的直線上的點,(e為橢圓C的離心率),求點的軌跡方程,并說明軌跡是什么曲線?

 

查看答案和解析>>

同步練習冊答案