已知曲線的極坐標方程是,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)設直線與軸的交點是,是曲線上一動點,求的最大值.

(1)(2)

解析試題分析:解:(Ⅰ)曲線的極坐標方程可化為,
,
所以曲線的直角坐標方程為           3分
(Ⅱ)將直線l的參數(shù)方程化為直角坐標方程,得,       4分
,得,即點的坐標為(2,0). 又曲線為圓,圓的圓心坐標為(0,1),
半徑,則,            6分
所以.即的最大值為       7分
考點:直線與圓關系
點評:主要是考查了直線與圓的位置關系的綜合運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直線l的參數(shù)方程: (t為參數(shù))和圓C的極坐標方程:ρ=2sin(θ+).
(1)將直線l的參數(shù)方程化為普通方程,圓C的極坐標方程化為直角坐標方程;
(2)判斷直線l和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系的軸的正半軸重合.直線的參數(shù)方程是(為參數(shù)),曲線C的極坐標方程為
(Ⅰ)求曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C相交于M,N兩點,求M,N兩點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在極坐標系中,圓的極坐標方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)若圓上的動點的直角坐標為,求的最大值,并寫出取得最大值時點P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為為參數(shù))曲線C2的參數(shù)方程為為參數(shù))在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=與C1,C2各有一個交點.當=0時,這兩個交點間的距離為2,當=時,這兩個交點重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設當=時,l與C1,C2的交點分別為A1,B1,當=-時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設直線的參數(shù)方程為(t為參數(shù)),若以直角坐標系點為極點,軸為極軸,選擇相同的長度單位建立極坐標系,得曲線的極坐標方程為ρ=
(1)將曲線的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線與曲線交于A、B兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,曲線為參數(shù))。在以為原點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,射線為,與的交點為,與除極點外的一個交點為。當時,。
(1)求,的直角坐標方程;
(2)設軸正半軸交點為,當時,設直線與曲線的另一個交點為,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)
已知在直角坐標系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點,是圓錐曲線的左,右焦點.
(Ⅰ)以原點為極點、軸正半軸為極軸建立極坐標系,求經過點且平行于直線的直線的極坐標方程;
(Ⅱ)在(I)的條件下,設直線與圓錐曲線交于兩點,求弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

((本小題滿分10分)
選修4—4:坐標系與參數(shù)方程
已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標方程是,以極點為原點,極軸為軸正方向建立直角坐標系,點,直線與曲線C交于A、B兩點.
(1)寫出直線的極坐標方程與曲線C的普通方程;
(2) 線段MA,MB長度分別記為|MA|,|MB|,求的值.

查看答案和解析>>

同步練習冊答案