函數(shù)f(x)=2sin(2x-
π
3
)的圖象的一條對稱軸方程是( 。
A、x=
π
12
B、x=
π
6
C、x=
12
D、x=
π
3
分析:根據(jù)三角函數(shù)的對稱軸公式即可進行判斷.
解答:解:∵f(x)=2sin(2x-
π
3
),
∴由2x-
π
3
=
π
2
+kπ,k∈Z
,
得x=
5
12
π+
2
.k∈Z,
∴當k=0時,對應(yīng)的對稱軸x=
12
,
故選:C.
點評:本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握三角函數(shù)的對稱軸公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
π
3
,
π
4
]
上的最小值是-2,則ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2sinωx(ω>0)在[-
3
,
3
]
上單調(diào)遞增,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城三模)已知函數(shù)f (x)=2sin(ωx+?)(ω>0)的部分圖象如圖所示,則ω=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0),直線x=x1,x=x2是函數(shù)y=f(x)的圖象的任意兩條對稱軸,且|x1-x2|的最小值為
π
2

(I)求ω的值;
(II)求函數(shù)f(x)的單調(diào)增區(qū)間;
(III)若f(a)=
2
3
,求sin(
5
6
π-4a)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(x-
π
3
)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在[0,
π
2
]的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案